Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Valdar, William
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology

RESEARCH INTEREST
Bioinformatics, Evolutionary Biology, Genetics, Genomics, Systems Biology

We are a quantitative genetics lab interested the relationship between genes and complex disease. Most of our work focuses on developing statistical and computational techniques for the design and analysis of genetic experiments in animal models. This includes, for example: Bayesian hierarchical modeling of gene by drug effects in crosses of inbred mouse strains; statistical methods for identifying quantitative trait loci (QTL) in a variety of experimental mouse populations (including the Collaborative Cross); computational methods for optimal design of studies on parent of origin effects; modeling of diet by gene by parentage interactions that affecting psychiatric disease; detection and estimation of genetic effects on phenotypic variability. For more information, visit the lab website.

Vision, Todd
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Biology

RESEARCH INTEREST
Bioinformatics, Computational Biology, Evolutionary Biology, Genomics, Plant Biology

Our lab uses computational and molecular tools to study the evolution of genome organization, primarily in the flowering plants. Areas of
investigation include the origin and consequences of differences in gene order within populations and between species, the evolutionary and functional diversification of gene families (phytome.org), and the application of genomics to evolutionary model organisms (mimulusevolution.org).  We also are involved in a number of cyberinfrastructure initiatives through the National Evolutionary Synthesis Center (nescent.org), including work on digital scientific libraries (datadryad.org), open bioinformatic software development (e.g. gmod.org) and the application of semantic web technologies to biological data integration (phenoscape.org).

Weeks, Kevin
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Chemistry, Genetics & Molecular Biology

RESEARCH INTEREST
Biochemistry, Bioinformatics, Biophysics, Chemical Biology, Computational Biology, Drug Discovery, Quantitative Biology, Structural Biology, Virology

One of the most amazing discoveries of recent years has been the profound role of RNA in regulating all areas of biology. Further, the functions of many RNA molecules require that an RNA fold back on itself to create intricately and complexly folded structures. Until recently, however, we had little idea of the broad contributions of RNA structure and function because there simply did not exist rigorous methods for understanding RNA molecules in cells and viruses. The vision of our laboratory is therefore, first, to invent novel chemical microscopes that reveal quantitative structure and function interrelationships for RNA and, second, to apply these RNA technologies to broadly important problems in biology. Mentoring and research in the lab are highly interdisciplinary. Students learn to integrate ideas and concepts spanning chemical and computational biology, and technology development, and extending to practical applications in virology, understanding biological processes in cells, and discovery of small molecule ligands targeted against medically important RNAs. Each student has a distinct project which they drive to an impactful conclusion, but do so as part of the lab team which, collectively, has shown an amazing ability to solve big problems in RNA biology. The overarching goal of mentoring in the lab is to prepare students for long-term leadership roles in science.

Zylka, Mark J.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Cell Biology, Genetics, Genomics, Molecular Biology, Neurobiology, Physiology

Our research is focused on two general areas:  1. Autism and 2. Pain.  Our autism research is focused on topoisomerases and other transcriptional regulators that were recently linked to autism.  We use genome-wide approaches to better understand how these transcriptional regulators affect gene expression in developing and adult neurons (such as RNA-seq, ChIP-seq, Crispr/Cas9 for knocking out genes).  We also assess how synaptic function is affected, using calcium imaging and electrophysiology.   In addition, we are performing a large RNA-seq screen to identify chemicals and drugs that increase risk for autism.   /  / Our pain research is focused on lipid kinases that regulate pain signaling and sensitization.  This includes work with cultured dorsal root ganglia (DRG) neurons, molecular biology and behavioral models of chronic pain.  We also are working on drug discovery projects, with an eye towards developing new therapeutics for chronic pain.

Calabrese, J. Mauro
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Genetics & Molecular Biology, Pharmacology

RESEARCH INTEREST
Bioinformatics, Cell Biology, Computational Biology, Genetics, Genomics, Molecular Biology, Pharmacology, Stem Cells

Our lab is trying to understand the mechanisms by which long noncoding RNAs orchestrate the epigenetic control of gene expression. Relevant examples of this type of gene regulation occur in the case of X-chromosome inactivation and autosomal imprinting. We specialize in genomics, but rely a combination of techniques —  including genetics, proteomics, and molecular, cell and computational biology — to study these processes in both mouse and human stem and somatic cell systems.

Maddox, Amy Shaub
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Biology, Cell Biology & Physiology, Genetics & Molecular Biology

RESEARCH INTEREST
Biochemistry, Bioinformatics, Biophysics, Cell Biology, Developmental Biology

My research philosophy is summed up by a quote from Nobelist Albert Szent-Gyorgyi: “Discovery is to see what everybody has seen and to think what nobody has thought.” My lab studies the molecular and physical mechanisms of cell shape change during cytokinesis and tissue biogenesis during development. Specifically, we are defining how cells ensure proper alignment and sliding of cytoskeletal filaments, and determining the shape of the cell throughout division. To do so, we combine developmental biology, cell biology, biochemistry, and quantitative image analysis.

Purvis, Jeremy
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Cancer Biology, Cell Signaling, Computational Biology, Molecular Biology, Systems Biology

We study the behavior of individual cells with a specific focus on “irreversible” cell fate decisions such as apoptosis, senescence, and differentiation. Why do genetically identical cells choose different fates? How much are these decisions controlled by the cell itself and how much is influenced by its environment? We address these questions using a variety of experimental and computational approaches including time-lapse microscopy, single-molecule imaging, computational modeling, and machine learning. Our ultimate goal is to not only understand how cells make decisions under physiological conditions—but to discover how to manipulate these decisions to treat disease.

Marchetti, Adrian
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology

RESEARCH INTEREST
Biochemistry, Bioinformatics, Ecology, Genomics, Physiology

We are a biological oceanography lab that performs inquiry-based science by combining physiological and molecular approaches in laboratory isolates and natural communities to investigate how marine microorganisms are affected by their environment and in turn, influence ocean biogeochemistry and ecosystem dynamics. Particular interests include studying trace metals, such as iron, that are essential for the nutrition of phytoplankton and predicting the effects of future climate changes on phytoplankton distribution and abundance.  We implement the use of environmental genomic approaches (e.g. RNA-seq) to ascertain the ways in which marine microbes have adapted and acclimate to varying environmental conditions.

Zou, Fei
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology

RESEARCH INTEREST
Computational Biology, Genetics, Genomics

My research has been concentrated on the areas of statistical genetics and genomics to investigate the role of genetic variations on complex quantitative traits and diseases. I work primarily in the development, as well as the examination of statistical properties, of theoretical methodologies appropriate for the interpretation of genetic data.

McKay, Daniel
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Developmental Biology, Genetics, Genomics, Molecular Biology

Research in the lab focuses on how a single genome gives rise to a variety of cell types and body parts during development. We use Drosophila as an experimental system to investigate (1) how transcription factors access DNA to regulate complex patterns of gene expression, and (2) how post-translational modification of histones contributes to maintenance of gene expression programs over time. We combine genomic approaches (e.g. CUT&RUN/ChIP, FAIRE/ATAC followed by high-throughput sequencing) with Drosophila genetics and transgenesis to address both of these questions.