Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Dowen, Jill
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology, Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Computational Biology, Genomics, Molecular Biology

My lab studies how genes function within the three-dimensional context of the nucleus to control development and prevent disease. We combine genomic approaches (ChIP-Seq, ChIA-PET) and genome editing tools (CRISPR) to study the epigenetic mechanisms by which transcriptional regulatory elements control gene expression in embryonic stem cells.  Our current research efforts are divided into 3 areas: 1) Mapping the folding pattern of the genome 2) Dynamics of three-dimensional genome organization as cells differentiate and 3) Functional analysis of altered chromosome structure in cancer and other diseases.

Stein, Jason
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Neuroscience

RESEARCH INTEREST
Bioinformatics, Computational Biology, Developmental Biology, Genomics, Neurobiology

We are a lab exploring how variations in the genome change the structure and development of the brain, and in doing so, create risk for neuropsychiatric illness. We study genetic effects on multiple aspects of the human brain, from macroscale phenotypes like gross human brain structure measured with MRI to molecular phenotypes like gene expression and chromatin accessibility measured with genome-sequencing technologies. We also use neural progenitor cells as a modifiable and high fidelity model system to understand how disease-associated variants affect brain development.

Phanstiel, Doug
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Cell Biology & Physiology

RESEARCH INTEREST
Bioinformatics, Developmental Biology, Genomics, Molecular Biology, Systems Biology

It is estimated that less than 2% of the human genome codes for a functional protein.  Scattered throughout the rest of the genome are regulatory regions that can exert control over genes hundreds of thousands of base pairs away through the formation of DNA loops.  These loops regulate virtually all biological functions but play an especially critical role in cellular differentiation and human development. While this phenomenon has been known for thirty years or more, only a handful of such loops have been functionally characterized.  In our lab we use a combination of cutting edge genomics (in situ Hi-C, ATAC-seq, ChIP-seq), proteomics, genome editing (CRISPR/Cas), and bioinformatics to characterize and functionally interrogate dynamic DNA looping during monocyte differentiation.  We study this process both in both healthy cells and in the context of rheumatoid arthritis and our findings have broad implications for both cell biology as well as the diagnosis and treatment of human disease.