Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Raab, Jesse
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Computational Biology, Genetics, Genomics

We are interested in the links between epigenetics and gene regulation. Our primary focus is on understanding how changes to the composition of chromatin remodeling complexes are regulated, how their disruption affects their function, and contributes to disease. We focus on the SWI/SNF complex, which is mutated in 20% of all human tumors. This complex contains many variable subunits that can be assembled in combination to yield thousands of biochemically distinct complexes. We use a variety of computational and wet-lab techniques in cell culture and animal models to address these questions.

Dowen, Rob
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Genetics & Molecular Biology

RESEARCH INTEREST
Cell Biology, Cell Signaling, Computational Biology, Genetics, Genomics, Metabolism

Appropriate allocation of cellular lipid stores is paramount to maintaining organismal energy homeostasis. Dysregulation of these pathways can manifest in human metabolic syndromes, including cardiovascular disease, obesity, diabetes, and cancer. The goal of my lab is to elucidate the molecular mechanisms that govern the storage, metabolism, and intercellular transport of lipids; as well as understand how these circuits interface with other cellular homeostatic pathways (e.g., growth and aging). We utilize C. elegans as a model system to interrogate these evolutionarily conserved pathways, combining genetic approaches (forward and reverse genetic screens, CRISPR) with genomic methodologies (ChIP-Seq, mRNA-Seq, DNA-Seq) to identify new components and mechanisms of metabolic regulation.

Azcarate-Peril, M. Andrea
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Nutrition

RESEARCH INTEREST
Bacteriology, Bioinformatics, Genomics, Molecular Biology, Systems Biology

We are interested in determining the mechanisms involved in the beneficial modulation of the gut microbiota by prebiotics (functional foods that stimulate growth of gut native beneficial bacteria) and probiotics (live bacteria that benefit their host). Specifically, we aim to develop prebiotic and probiotic interventions as alternatives to traditional treatments for microbiota-health related conditions, and to advance microbiota-based health surveillance methods.

Chorley, Brian
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cell Biology, Genomics, Molecular Biology, Systems Biology, Toxicology

The long-term goal of my research is to incorporate ‘omic (genomic, epigenomic, proteomic, etc.) measurements into environmental human health hazard identification, prioritization and risk assessment using a quantitative and interpretable biological systems framework. Thus, short-term goals have been to develop the molecular tools to investigate key biological events, and measurable biomarkers linked to those events, related to important disease processes that are impacted by environmental chemical exposures, such as liver and lung toxicity.  We have focused recent efforts on early-in-life genomic and epigenetic alterations and linkages to latent adverse outcome susceptibility due to commons exposures, genetics, and pre-existing conditions. Our laboratory uses cutting edge techniques such as gene editing tools including CRISPR-based methods; next generation nucleic acid-based sequencing to probe the genome and epigenome; advance, high-throughput microscopy; targeted RNA, DNA, and non-coding RNA measurements such as digital drop PCR and Fireplex; and advanced in vitro models.

Zannas, Anthony
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Genetics & Molecular Biology, Neuroscience

RESEARCH INTEREST
Computational Biology, Genomics, Molecular Biology, Molecular Medicine, Translational Medicine

Psychosocial stress is abundant in modern societies and, when chronic or excessive, can have detrimental effects on our bodies. But how exactly does stress “get under the skin?” Our lab examines how stress shapes the human epigenome as age advances. Epigenetic changes are a set of chemical modifications that regulate gene transcription without altering the genetic code itself. We examine how lasting epigenetic patterns result from stressful experiences, accrue throughout life, and can in turn shape health or disease trajectories. We address these questions through a translational approach that combines large-scale analyses in human cohorts with mechanistic work in cellular models. We use both bioinformatics and wet lab tools. Our passion is to promote creative team work, offer strong mentorship, and foster scientific growth.

Vincent, Benjamin
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Microbiology & Immunology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Computational Biology, Genomics, Immunology, Systems Biology, Translational Medicine

The Vincent laboratory focuses on immunogenomics and systems approaches to understanding tumor immunobiology, with the goal of developing clinically relevant insights and new cancer immunotherapies.  Our mission is to make discoveries that help cancer patients live longer and better lives, focusing on research areas where we feel our work will lead to cures. Our core values are scientific integrity, continual growth, communication, resource stewardship, and mutual respect.

Diekman, Brian
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cell Biology, Genomics, Molecular Biology, Molecular Medicine, Stem Cells, Translational Medicine

A major focus of the Diekman lab is to develop new strategies to limit age-related osteoarthritis (OA).  The lab uses genetically-engineered mouse models to investigate the development of cellular senescence in joint tissues with physiologic aging.  One goal of this work is to determine whether “senolytic” compounds that induce selective apoptosis in senescent cells will mitigate OA development.  Our group has also developed genome-editing protocols for primary human chondrocytes to produce single-cell derived colonies with homozygous knockout of target genes.  We are using engineered tissues from these cells to dissect the mechanism of genes implicated in OA development by genome-wide association studies, as well as coupling these technologies to high throughput screening approaches for OA drug discovery.

Won, Hyejung
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Genetics & Molecular Biology, Neuroscience

RESEARCH INTEREST
Bioinformatics, Genetics, Genomics, Molecular Biology, Neurobiology

We try to bridge the gap between genetic risk factors for psychiatric illnesses and neurobiological mechanisms by decoding the regulatory relationships of the non-coding genome. In particular, we implement Hi-C, a genome-wide chromosome conformation capture technique to identify the folding principle of the genome in human brain. We then leverage this information to identify the functional impacts of the common variants associated with neuropsychiatric disorders.

Tsagaratou, Ageliki
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Genetics & Molecular Biology, Microbiology & Immunology

RESEARCH INTEREST
Cancer Biology, Genetics, Genomics, Immunology, Molecular Biology

We aim to dissect the epigenetic and transcriptional mechanisms that shape T cell lineage specification during development in the thymus and in the periphery upon antigen (microbial, viral) encounter. Aberrant expression of transcription and epigenetic factors can result in inflammation, autoimmunity or cancer. We are using gene deficient mouse models, multiparameter Flow Cytometry, molecular biology assays and next generation sequencing technologies to elucidate the regulatory information in cells of interest (transcriptome, epigenome, transcription factor occupancy).

O'Brien, Lori
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cell Biology, Developmental Biology, Genomics, Physiology, Translational Medicine

Modern Technologies from next-gen sequencing to high resolution imaging have advanced our knowledge of kidney development, function, and disease. We are among the pioneers utilizing techniques such as CHIP-seq, RNA-seq, modern genome editing, and imaging to understand how regulatory programs control progenitor populations during kidney development. Our goal is to understand how these programs contribute to progenitor specification and maintenance, and how they are altered during disease and aging. Our ultimate goal is translational applications of our research to develop new therapeutics and regenerative strategies.