Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Magnuson, Terry
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Cancer Biology, Cell Biology, Developmental Biology, Genetics, Genomics

The Magnuson Lab works in three areas – (i) Novel approaches to allelic series of genomic modifications in mammals, (ii)Mammalian polycomb-group complexes and development, (iii) Mammalian Swi/Snf chromatin remodeling complexes

Maness, Patricia F.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Neuroscience

RESEARCH INTEREST
Cell Biology, Developmental Biology, Neurobiology

My research focuses on molecular mechanisms of mammalian nervous system development. We investigate mechanisms by which developing neurons migrate to the neocortex and form connections.

Marzluff, William
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology, Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Biochemistry, Cancer Biology, Developmental Biology, Genetics, Genomics, Molecular Biology, Systems Biology

We are interested in the mechanisms by which histone protein synthesis is coupled to DNA replication, both in mammalian cell cycle and during early embryogenesis in Drosophila, Xenopus and sea urchins.

Matera, Greg
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Genetics & Molecular Biology, Neuroscience

RESEARCH INTEREST
Cancer Biology, Cell Biology, Developmental Biology, Genetics, Genomics

The research in our laboratory focuses on epigenetics and RNA processing. In particular, we are interested in the roles of small ribonucleoproteins (RNPs) and histone post-translational modifications in the regulation of eukaryotic gene expression.  There are two main projects in the lab. (1) We have created a comprehensive genetic platform for histone gene replacement that — for the first time in any multicellular eukaryote — allows us to directly determine the extent to which histone post-translational modifications contribute to cell growth and development. (2) We study an RNP assembly factor (called Survival Motor Neuron, SMN) and its role in neuromuscular development and a genetic disease called Spinal Muscular Atrophy (SMA). Current work is aimed at a molecular understanding of SMN’s function in spliceosomal snRNP assembly and its dysfunction in SMA pathophysiology.

Pardo-Manuel de Villena, Fernando
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Bioinformatics, Computational Biology, Developmental Biology, Genetics, Genomics, Organismal Biology

Non-Mendelian genetics including, meiotic drive, parent-of-orifin effects and allelic exclusion.

Peifer, Mark
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Genetics & Molecular Biology, Neuroscience

RESEARCH INTEREST
Biochemistry, Cancer Biology, Cell Biology, Cell Signaling, Developmental Biology, Genetics

Cell adhesion, cytoskeletal regulation and Wnt signaling in development and cancer
The Peifer lab works at the interface between cell, developmental, and cancer biology, focusing on the epithelial tissues that form the basic architectural unit of our bodies and of those of other animals. We explore how the machinery mediating cell adhesion, cytoskeletal regulation and Wnt signaling regulates cell fate and tissue architecture in development and disease. We take a multidisciplinary approach, spanning genetics, cutting edge cell biology including super-resolution microscopy, biochemistry and computational approaches. We use the fruit fly Drosophila as an animal model and combine that with work in cultured normal and colorectal cancer cells. Possible thesis projects include exploring how connections between cell junctions and the cytoskeleton are remodeled to allow cells to change shape and move without tearing tissues apart or exploring how the tumor suppressor protein APC assembles a multi-protein machine that negatively regulates Wnt signaling and how this goes wrong in colorectal tumors. I am a hands on-mentor with an open-door policy and my office is in the lab. I value and advocate for diversity. Our lab has a strong record of training PhD students and postdocs who move on to success in diverse science-related careers. Our lab is funded by a long-standing NIH grant that extends to July 2021, and just received a good score for renewal. To learn more about or research, our recent publications, our team and our alumni check out the lab website at: https://proxy.qualtrics.com/proxy/?url=http%3A%2F%2Fpeiferlab.web.unc.edu%2F&token=1rPNJvHEEfhAAiwkSviuOG0Fg8%2ByN3Q3GMob1A2GJwM%3D

Qian, Li
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Pathobiology & Translational Science

RESEARCH INTEREST
Cardiovascular Biology, Cell Biology, Developmental Biology, Genetics, Molecular Biology

Our laboratory is interested in developing innovative approaches to regenerate or repair an injured heart. Our goal is to understand the molecular basis of cardiomyocyte specification and maturation and apply this knowledge to improve efficiency and clinical applicability of cellular reprogramming in heart disease. To achieve these goals, we utilize in vivo modeling of cardiac disease in the mouse, including myocardial infarction (MI), cardiac hypertrophy, chronic heart failure and congenital heart disease (CHD). In addition, we take advantage of traditional mouse genetics, cell and molecular biology, biochemistry and newly developed reprogramming technologies (iPSC and iCM) to investigate the fundamental events underlying the progression of various cardiovascular diseases as well as to discover the basic mechanisms of cell reprogramming.

Reed, Jason
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Cell Signaling, Developmental Biology, Genetics, Plant Biology, Systems Biology

Regulation of plant development:  We use techniques of genetics, molecular biology, microscopy, physiology, and biochemistry to study how endogenous developmental programs and exogenous signals cooperate to determine plant form.  The model plant Arabidopsis thaliana has numerous technical advantages that allow rapid experimental progress.  We focus on how the plant hormone auxin acts in several different developmental contexts.  Among questions of current interest are i) how auxin regulates patterning in embryos and ovules, ii) how light modifies auxin response, iii) how feedback loops affect kinetics or patterning of auxin response, iv) how flower opening and pollination are regulated, and v) whether natural variation in flower development affects rates of self-pollination vs. outcrossing.

Rogers, Steve
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Genetics & Molecular Biology

RESEARCH INTEREST
Cancer Biology, Cell Biology, Cell Signaling, Developmental Biology, Genomics

The research in our lab is centered on understanding the mechanisms and principles of movement at the cellular level. Cytoskeletal filaments – composed of actin and microtubules – serve as a structural scaffolding that gives cells the ability to divide, crawl, and change their shape.  Our lab uses a combination of cell biological, biochemical, functional genomic, and  high resolution imaging techniques to study cytoskeletal dynamics and how they contribute to cellular motion.

Taylor, Joan M.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Pathobiology & Translational Science

RESEARCH INTEREST
Cardiovascular Biology, Cell Signaling, Developmental Biology, Genetics, Pathology

The goal of our research is to identify signaling mechanisms that contribute to normal and pathophysiological cell growth in the cardiovascular system.  We study cardiac and vascular development as well as heart failure and atherosclerosis.