Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Wang, Greg Gang
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Genetics & Molecular Biology

RESEARCH INTEREST
Biochemistry, Cancer Biology, Developmental Biology, Genomics, Molecular Biology

With an emphasis on chromatin biology and cancer epigenetics, our group focuses on mechanistic understandings of how chemical modifications of chromatin define distinct patterns of human genome, control gene expression, and regulate cell proliferation versus differentiation during development, and how their deregulations lead to oncogenesis. Multiple on-going projects employ modern biological technologies to: 1) biochemically isolate and characterize novel factors that bind to histone methylation on chromatin, 2) examine the role of epigenetic factors (chromatin-modifying enzymes and chromatin-associated factors) during development and tumorigenesis using mouse knockout models, 3) analyze epigenomic and transcriptome alternation in cancer versus normal cells utilizing next-generation sequencing technologies, 4) identify novel oncogenic or tumor suppressor genes associated with leukemia and lymphoma using shRNA library-based screening. We are also working together with UNC Center of Drug Discovery to develop small-molecule inhibitors for chromatin-associated factors as novel targeted cancer therapies.

Liu, Pengda
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics

RESEARCH INTEREST
Biochemistry, Cancer Biology, Cell Biology, Cell Signaling, Drug Discovery

If you are interested in developing new biochemical/molecular techniques/tools to advance our understanding of biology, and if you are interested in signal transduction pathway analyses and identification of cancer biomarkers, our research group may help you to achieve your goals, as we have the same dreams. We are especially interested in deciphering the molecular mechanisms underlying aberrant signaling events that contribute to tumorigenesis, mediated through protein modifications and protein-protein interactions. Understanding these events may lead to identification of novel drug targets and provide new treatment strategies to combat human cancer.

McGinty, Robert
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Pharmaceutical Sciences

RESEARCH INTEREST
Biochemistry, Biophysics, Chemical Biology, Molecular Biology, Structural Biology

The McGinty lab uses structural biology, protein chemistry, biochemistry, and proteomics to study epigenetic signaling through chromatin in health and disease. Chromatin displays an extraordinary diversity of chemical modifications that choreograph gene expression, DNA replication, and DNA repair – misregeulation of which leads to human diseases, especially cancer. We prepare designer chromatin containing specific combinations of histone post-translational modifications. When paired with X-ray crystallography and cryo-electron microscopy, this allows us to interrogate mechanisms underlying epigenetic signaling at atomic resolution.

Griffith, Jack
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Genetics & Molecular Biology, Microbiology & Immunology

RESEARCH INTEREST
Biochemistry, Biophysics, Molecular Biology, Structural Biology, Virology

We are interested in basic DNA-protein interactions as related to – DNA replication, DNA repair and telomere function.  We utilize a combination of state of the art molecular and biochemical methods together with high resolution electron microscopes.

Errede, Beverly
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Genetics & Molecular Biology

RESEARCH INTEREST
Biochemistry, Genetics, Molecular Biology

Yeast molecular genetics; MAP-Kinease activation pathways; regulation of cell differentiation.

Dohlman, Henrik
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology, Pharmacology

RESEARCH INTEREST
Biochemistry, Cell Signaling, Genomics, Pharmacology, Systems Biology

We use an integrated approach (genomics, proteomics, computational biology) to study the molecular mechanisms of hormone and drug desensitization. Our current focus is on RGS proteins (regulators of G protein signaling) and post-translational modifications including ubiquitination and phosphorylation.

Cook, Jeanette (Jean)
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Cell Biology & Physiology, Genetics & Molecular Biology, Pharmacology

RESEARCH INTEREST
Biochemistry, Cancer Biology, Cell Signaling, Genetics, Molecular Biology

The Cook lab studies the major transitions in the cell division cycle and how perturbations in cell cycle control affect genome stability. We have particular interest in mechanisms that control protein abundance and localization at transitions into and out of S phase (DNA replication phase) and into an out of quiescence. We use a variety of molecular biology, cell biology, biochemical, and genetic techniques to manipulate and evaluate human cells as they proliferate or exit the cell cycle. We collaborate with colleagues interested in the interface of cell cycle control with developmental biology, signal transduction, DNA damage responses, and oncogenesis.

Clemmons, David R.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics

RESEARCH INTEREST
Cell Biology, Genetics, Molecular Medicine, Pathology, Physiology, Structural Biology, Systems Biology

Cross-talk between insulin like growth factor -1 and cell adhesion receptors in the regulation of cardiovascular diseases and complications associated with diabetes.

Chen, Xian
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics

RESEARCH INTEREST
Cancer Biology, Computational Biology, Immunology, Pathology, Systems Biology

Developing and applying novel mass spectrometry (MS)-based proteomics methodologies for high throughput identification, quantification, and characterization of the pathologically relevant changes in protein expression, post-translational modifications (PTMs), and protein-protein interactions. Focuses in the lab include: 1) technology development for comprehensive and quantitative proteomic analysis, 2) investigation of systems regulation in toll-like receptor-mediated pathogenesis and 3) proteomic-based mechanistic investigation of stress-induced cellular responses/effects in cancer pathogenesis.

Carter, Charles
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology

RESEARCH INTEREST
Biochemistry, Bioinformatics, Biophysics, Computational Biology, Molecular Biology, Structural Biology

Molecular evolution and mechanistic enzymology find powerful synergy in our study of aminoacyl-tRNA synthetases, which translate the genetic code. Class I Tryptophanyl-tRNA Synthetase stores free energy as conformational strain imposed by long-range, interactions on the minimal catalytic domain (MCD) when it binds ATP. We study how this allostery works using X-ray crystallography, bioinformatics, molecular dynamics, enzyme kinetics, and thermodynamics. As coding sequences for class I and II MCDs have significant complementarity, we also pursuing their sense/antisense ancestry. Member of the Molecular & Cellular Biophysics Training Program.