Skip to main content

Our primary research is in the area of computational systems biology, with particular interest in the study of biological signaling networks; trying to understand their structure, evolution and dynamics. In collaboration with wet lab experimentalists, we develop and apply computational models, including probabilistic graphical and multivariate methods along with more traditional engineering approaches such as system identification and control theory, to current challenges in molecular biology and medicine. Examples of recent research projects include: prediction of protein interaction networks, multivariate modeling of signal transduction networks, and development of methods for integrating large-scale genomic data sets.