Faculty Database:
[ PhD Program: Microbiology & Immunology Keyword: ]

Filter faculty by:
See All
NameEmailPhd ProgramResearch InterestsPublications
Arthur, Janelle C. email , , , , publications

The Arthur lab is interested in mechanisms by which inflammation alters the functional capabilities of the microbiota, with the long-term goal of targeting resident microbes as a preventative and therapeutic strategy to lessen inflammation and reduce the risk of colorectal cancer. We utilize a unique and powerful in vivo system – germ-free and gnotobiotic mice – to causally link specific microbes, microbial genes, and microbial metabolites with health and disease in the gut.  We also employ basic immunology and molecular microbiology techniques as well as next generation sequencing and bioinformatics to evaluate these essential host-microbe interactions.

Bourret, Bob email , , , , publications

Our long-term goal is to define the molecular mechanisms of two-component regulatory systems, which are utilized for signal transduction by bacteria, archaea, eukaryotic microorganisms, and plants.  Our current focus is to identify and understand the features that control the rates of several different types of protein phosphorylation and dephosphorylation reactions.  The kinetics of phosphotransfer reactions can vary dramatically between different pathways and reflect the need to synchronize biological responses (e.g. behavior, development, physiology, virulence) to environmental stimuli.  Member of the Molecular & Cellular Biophysics Training Program.

Braunstein, Miriam email , , , , publications

Our research focuses on understanding the virulence mechanisms of Mycobacterium tuberculosis, the bacterium responsible for the disease tuberculosis.

Burch, Christina email , , , , , publications

Experimental Evolution of Viruses.  We use both computational and experimental approaches to understand how viruses adapt to their host environment.  Our research attempts to determine how genome complexity constrains adaptation, and how virus ecology and genetics interact to determine whether a virus will shift to utilizing new host.  In addition, we are trying to develop a framework for predicting which virus genes will contribute to adaptation in particular ecological scenarios such as frequent co-infection of hosts by multiple virus strains.  For more information, and for advice on applying to graduate school at UNC, check out my lab website www.unc.edu/~cburch/lab.

Burks, Wesley email , , , , publications

The UNC Food Allergy Institute (UNCFAI) was established in 2012 to address the growing needs of children and adults with food allergy. Program investigators study the biologic basis of food allergy in the laboratory and in clinical research studies seeking to better understand the role of allergen-specific IgE and the mechanism of allergen immunotherapy. The Institute provides comprehensive, family-centered patient care for food allergy, food-related anaphylaxis, and other related disorders like atopic dermatitis and eosinophilic esophagitis.

Cairns, Bruce A. email , , , , publications

The immune system of severely burned patients becomes extremely suppressed after injury. An overwhelming number of patients die from wound infection and sepsis. However, we are unable to graft these patients with skin from other donors as their immune system is still able to reject the graft efficiently. Our inability to cover the wound site leaves the patients further open to bacterial and fungal infections. Our laboratory investigates the translational immune mechanisms for these devastating consequences of burn within mouse models and burn patients. Focuses in the lab include  1) investigation of innate molecule control of both the innate and adaptive immune systems after burn injury, 2) Role of innate signaling to Damage Associated Molecular Patterns in Immune Dysfunction after burn / inhalational injury,focusing on  mTOR-mediated Immunomodulation 3) Using NRF2/KEAP1-Targeted Therapy to Prevent Pneumonitis and Immune Dysfunction After Radiation or Combined Burn-Radiation Injury and 4) Investigating sex-specific disparities in Immune Dysfunction after trauma / transplantation. ​

Conlon, Brian P. email , , , , publications

My lab is focused on the improvement of treatment of chronic bacterial infections. We aim to determine the mechanisms of antibiotic tolerance. Our aim is to understand the physiology of the bacterial cell, primarily Staphylococcus aureus, during infection and how this physiology allows the cell to survive lethal doses of antibiotic. We will use advanced methods such as single cell analysis and Tn-seq to determine the factors that facilitate survival in the antibiotic’s presence. Once we understand this tolerance, we will develop advanced screens to identify novel compounds that can be developed into therapeutics that can kill these drug tolerant “persister” cells and eradicate deep-seated infections.

Cotter, Peggy email , , , , publications

Dr. Cotter’s research is aimed at understanding molecular mechanisms of bacterial pathogenesis. Using Bordetella species as models, her group is studying the role of virulence gene regulation in respiratory pathogenesis, how virulence factors activate and suppress inflammation in the respiratory tract, and how proteins of the Two Partner Secretion pathway family are secreted to the bacterial surface and into the extracellular environment. A second major project is focused on Burkholderia pseudomallei, an emerging infectious disease and potential biothreat agent. This research is aimed at understanding the role of autotransporter proteins in the ability of this organism to cause disease via the respiratory route.

Damania, Blossom email , , , , , publications

The work in our laboratory is focused on understanding the molecular pathogenesis of Kaposi’s sarcoma-associated herpesvirus (KSHV), an oncogenic human virus. KSHV is associated with several types of cancer in the human population. We study the effect of KSHV viral proteins on cell proliferation, transformation, apoptosis, angiogenesis and cell signal transduction pathways. We also study viral transcription factors, viral replication, and the interactions of KSHV with the human innate immune system. Additionally, we are developing drug therapies that curb viral replication and target tumor cells.

Dangl, Jeff email , , , , , , , publications

We use the premier model plant species, Arabidopsis thaliana, and real world plant pathogens like the bacteria Pseudomonas syringae and the oomycete Hyaloperonospora parasitica to understand the molecular nature of the plant immune system, the diversity of pathogen virulence systems, and the evolutionary mechanisms that influence plant-pathogen interactions. All of our study organisms are sequenced, making the tools of genomics accessible.

Darville, Lee Antoinette (Toni) email , , , , publications

Research in the Darville lab is focused on increasing our understanding of immune signaling pathways active in development of genital tract disease due to Chlamydia trachomatis and determination of chlamydial antigen-specific T cell responses that lead to protection from infection and disease. In vitro, murine model, and human studies are being performed with the ultimate goal to develop a vaccine against this prevalent sexually transmitted bacterial pathogen. Genetic and transcriptional microarray studies are being performed to explore pathogenic mechanisms and determine biomarkers of pelvic inflammatory disease due to Chlamydia as well as other sexually transmitted pathogens.

De Paris, Kristina email , , , publications

Our research focuses on the immunological aspects of pathogen-host interactions. The lab is actively involved in HIV pathogenesis and vaccine studies using the nonhuman primate model of SIV infection. We are particularly interested in pediatric HIV transmission by breast-feeding and the early, local host immune response. A main research focus is on developmental differences in host immune responses between infants and adults and how they alter pathogenesis. The effect of co-infections (e.g. malaria and Tb) on HIV pathogenesis and transmission is a second research focus. The lab is developing a nonhuman primate model of SIV-Plasmodium fragile co-infection to study HIV-P. falciparum infection in humans.

de Silva, Aravinda email , , , , publications

We study Borrelia burgdorferi (the agent of Lyme disease) as a model for understanding arthropod vector-borne disease transmission. We also study the epidemiology and pathogenesis of dengue viruses associated with hemorrhagic disease.

Dittmer, Dirk email , , , , , publications

Our lab tries to understand viral pathogenesis. To do so, we work with two very different viruses – West Nile Virus (WNV) and Kaposi¹s sarcoma-associated herpesvirus (KSHV/HHV-8).

Garcia-Martinez, J. Victor email , , , , publications

Over millions of years of coexistence humans and pathogens have develop intricate and very intimate relationships.  These highly specialized interactions are the basic determinants of pathogenesis and disease progression.  Our laboratory is interested in elucidating the molecular basis of disease.  Our multidisciplinary approach to molecular medicine is based on our interest in the translation of basic research observations into clinical implementation.  For this purpose we use a variety of in vitro and in vivo approaches to study AIDS, Cancer, immunological diseases, gene therapy, etc.  Of particular interest is the use of state of the art models such as humanized mice to study human specific pathogens like HIV, EBV, Kaposiâ’s sarcoma, influenza, xenotropic murine leukemia virus-related virus.  In addition, we are interested in the development and implementation of novel approaches to prevent viral transmission using pre-expossure prophylaxis and vaccines.

Goldman, William email , , , , publications

Successful respiratory pathogens must be able to respond swiftly to a wide array of sophisticated defense mechanisms in the mammalian lung.  In histoplasmosis, macrophages — a first line of defense in the lower respiratory tract — are effectively parasitized by Histoplasma capsulatum.  We are studying this process by focusing on virulence factors produced as this “dimorphic” fungus undergoes a temperature-triggered conversion from a saprophytic mold form to a parasitic yeast form.  Yersinia pestis also displays two temperature-regulated lifestyles, depending on whether it is colonizing a flea or mammalian host.  Inhalation by humans leads to a rapid and overwhelming disease, and we are trying to understand the development of pneumonic plague by studying genes that are activated during the stages of pulmonary colonization.

Goonetilleke, Nilu email , , publications

We are a human immunology lab focusing on all aspects of T cell immunobiology in HIV-1 infection. Studies range from basic questions like, ‘What are the determinants of the first T cell response following infection?’ to translational challenges such as ‘What is the best design for a T cell vaccine to either prevent infection or achieve HIV-1 cure?’

Keywords: T cells, HIV-1, Escape, CD8 T cells, Vaccines, Cure, Vaccines

Griffith, Jack email , , , , , , publications

We are interested in basic DNA-protein interactions as related to – DNA replication, DNA repair and telomere function.  We utilize a combination of state of the art molecular and biochemical methods together with high resolution electron microscopes.

Hansen, Jonathan email , , , publications

Current research indicates that inflammatory bowel diseases (IBD’s), including Crohn’s disease and ulcerative colitis, are due to uncontrolled innate and adaptive immune responses to commensal (non-pathogenic) intestinal bacteria in genetically susceptible hosts.  However, the roles of intestinal bacteria in the perpetuation and progression of IBD’s are unclear and the effects of intestinal inflammation on commensal bacterial physiology and virulence are unknown.  We hypothesize that commensal bacteria dynamically respond to intestinal inflammation in a manner that perpetuates or worsens disease.  Exploring this hypothesis will enhance our understanding of the pathogenesis of IBD’s and host-microbial interactions, and potentially identify new therapeutic targets for these currently incurable diseases.

Heise, Mark email , , , , , publications

We study alphavirus infection to model virus-induced disease.  Projects include 1) mapping viral determinants involved in encephalitis, and 2) using a mouse model of virus-induced arthritis to identify viral and host factors associated with disease.

Hirsch, Matthew email , , , , , publications

Our lab works with adeno-associated viral vectors for both the characterization of vector and host responses upon transduction and as therapeutic agents for the treatment of genetic diseases.  In particular, we tend to focus on the 145 nucleotide viral inverted terminal repeats of the transgenic genome and their multiple functions including the replication initiation, inherent promoter activity, and stimulation of intra/inter molecular DNA repair pathways.  The modification of the AAV ITRs by synthetic sequences imparts unique functions/activities rendering these synthetic vectors perhaps better suited for therapeutic applications.

Jaspers, Ilona email , , , , , publications

Research in my lab focuses on the mechanisms by which exposure to air pollutants alters respiratory immune responses and modifies susceptibility to and the severity of respiratory virus infections. Specifically, we are examining the effects of air pollutants such as ozone, woodsmoke and tobacco product exposures on host defense responses and influenza virus infections, using several in vitro models of the respiratory epithelium. In collaboration with physician scientists, we are also translating these studies into humans in vivo.

Kafri, Tal email , , , , publications

Our lab is focused on the development of HIV-1 vectors for gene therapy of genetic disease.  In addition, we are using the vector system to study HIV-1 biology.  We are also interested in utilizing the HIV-1 vector system for functional genomics.

Lai, Samuel email , , , , , , , , publications

Our dynamic group are broadly involve in three topics: (i) prevention of infectious diseases by harnessing interactions between secreted antibodies and mucus, (ii) immune response to biomaterials, and (iii) targeted delivery of nanomedicine.  Our group was the first to discover that secreted antibodies can interact with mucins to trap pathogens in mucus.  We are now harnessing this approach to engineer improved passive and active immuniation (i.e. vaccines) at mucosal surfaces, as well as understand their interplay with the mucosal microbiome.  We are also studying the adaptive immune response to polymers, including anti-PEG antibodies, and how it might impact the efficacy of PEGylated therapeutics.  Lastly, we are engineering fusion proteins that can guide targeted delivery of nanomedicine to heterogenous tumors and enable personalized medicine.

Lazear, Helen email , , , publications

We use molecular virology approaches and mouse models of infection to understand innate immune mechanisms that control arbovirus pathogenesis (e.g. West Nile, Zika, and La Crosse viruses). Bat flaviviruses have unusual vector/host relationships; understanding the viral and host factors that determine flavivirus host range is important for recognizing potential emerging infections. We are studying the antiviral effects of interferon lambda (IFN-λ) at barrier surfaces, including the blood-brain barrier and the skin. We also use mouse models of atopic dermatitis and herpes simplex virus infection to understand the effects of IFN- λ in the skin. (Accepting rotation students for spring 2016)

Liu, Zhi email , , , , publications

Biochemistry, cell biology, and immunology of skin, immunopathogenesis of autoimmune and inflammatory skin blistering diseases.

Maile, Robert email , , , , , publications

An overwhelming number of burn patients die from wound infection and sepsis. Our laboratory, along with Dr Bruce Cairns, investigates translational immune mechanisms within mouse models and burn patients. Focuses in the lab include  1) investigation of innate molecule control of both the innate and adaptive immune systems after burn injury, 2) role of innate signaling to Damage Associated Molecular Patterns in Immune Dysfunction after burn / inhalational injury 3) using NRF2/KEAP1-Targeted Therapy to Prevent Pneumonitis and Immune Dysfunction After Radiation or Combined Burn-Radiation Injury and 4) Investigating sex-specific disparities in Immune Dysfunction

Margolis, David email , , , , publications

The overall goal of our laboratory is to obtain new insights into the host-virus interaction, particularly in HIV infection, and translate discoveries in molecular biology and virology to the clinic to aid in the treatment of HIV infection. A subpopulation of HIV-infected lymphocytes is able to avoid viral or immune cytolysis and return to the resting state. Current work focuses on the molecular mechanisms that control the latent reservoir of HIV infection within resting T cells. We have found that cellular transcription factors widely distributed in lymphocytes can remodel chromatin and maintain quiescence of the HIV genome in resting CD4+ lymphocytes. These studies give insight into the basic molecular mechanisms of eukaryotic gene expression, as well as new therapeutic approaches for HIV infection.

Markovic-Plese, Silva email , , , , , publications

My long-term goal is to understand and therapeutically target the key mechanisms of disease development in patients with multiple sclerosis (MS).  Our research has been focused on the molecular events involved in the initiation of the autoimmune response in MS, and on the mechanisms of action of immunomodulatory therapies for this disabling disease.  Current projects in the laboratory include transcriptional and proteomic profiling of the peripheral blood cells and cerebrospinal fluid obtained from patients in the early phase of the disease, which lead to the discovery of the high levels of IL-11 in the CSF and its high up-regulation in the blood-derived CD4+ T-cells in patients with clinically isolated syndrome (CIS) suggestive of MS. Our center is uniquely positioned to perform the proposed research, having an access to the clinical samples through the integrated clinical and cellular/molecular biology research.

Martinez, Jennifer email , , , , , publications

The focus of the work in the Martinez lab is to examine the non-canonical roles for the autophagy machinery during inflammation.  Our recent work about LC3-associated phagocytosis (LAP) higlights the importance of this non-canonical autophagic process in maintaining tolerance and preventing unwanted autoinflammatory pathologies.

Matsushima, Glenn K email , , , , , , publications

Our laboratory is interested in innate immune responses during injury to the central nervous system and during inflammation during microbial infections.  Our laboratory has a special interest in autoimmune diseases such as multiple sclerosis and systemic lupus erythematosus.  We also are pursuing drug discovery projects targeting receptors that may modulate demyelinating disease and immune responses.  We use molecular, cellular and biochemical approaches both in vitro and in vivo to identify the function of key mediators during pathogenesis.

Miao, Edward A email , , , publications

We study the mechanisms by which innate immunity detects virulence factor activity in pathogenic bacteria. Research focuses on how macrophages detect bacterial type III secretion systems through the inflammasome, which activates Caspase-1, promoting secretion of the cytokines IL-1b and IL-18, as well as pyroptotic cell death. We manipulate bacterial virulence genetically and probe how this alters innate immune detection during infection. This focus joins the fields of microbial pathogenesis and immunology, utilizing the knowledge and tools of both disciplines.

Miller, Virginia L email , , , publications

Molecular genetic analysis of virulence of Yersinia and Klebsiella: My laboratory uses Yersinia enterocolitica, Y. pestis, and Klebsiella as model systems to study bacterial pathogenesis. The long-term goals of our work are to understand the bacteria-host interaction at the molecular level to learn how this interaction affects the pathogenesis of infections and to understand how these pathogens co-ordinate the expression of virulence determinants during an infection. To do this we use genetic, molecular and immunological approaches in conjunction with the mouse model of infection.

Moody, Cary email , , , , publications

The work in my laboratory focuses on the molecular biology of human papillomaviruses (HPV), small DNA viruses that exhibit epithelial tropism. Certain types of HPV are considered the causative agents of cervical cancer and are also associated with cancers of the anus, oropharynx and esophagus.  My lab is interested in defining mechanisms that regulate the productive phase of the HPV life cycle, which is restricted to differentiating epithelia and includes viral genome amplification, late gene expression and virion production. Using various methods of epithelial differentiation, we are studying how HPV proteins modulate cell signaling pathways, including the DNA damage response and apoptosis, to facilitate viral replication, which in turn contributes to viral pathogenesis and possibly transformation. I will be accepting rotation students beginning in the winter of 2010.

Moorman, Nat email , , , , publications

How does a virus gain control over the host cell? My laboratory is interested in answering this question at the molecular level. By combining molecular biology and virology with new technologies (e.g. mass spectrometry, next generation sequencing), we investigate the mechanisms utilized by viruses to hijack infected cells. By understanding the specific function(s) of viral proteins during infection, we identify strategies used by viruses for deregulation of host cell processes. We use this information to characterize novel features of cell signaling pathways during infection, and to identify potential targets for anti-viral therapeutics.

Nagarajan, Uma M email , , , , , publications

Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen that causes Fallopian tube inflammation and subsequent tubal infertility in women.  Our current research interest is to investigate the role of an innate immune responses to chlamydial infection and its role in genital tract pathology in a mouse model of genital infection.  Specifically, we are interested in delineating pathogen recognition by the host, signaling pathways that lead to the induction of innate immune cytokines in vitro and their downstream cellular effects in vivo.  We are specifically interested in understanding the contribution type I IFN, IL-1 activation, caspases and damage associated molecular patterns in pathogenesis. The identification of host molecules involved in amplification of the inflammatory response during infection, would serve as biomarkers and therapeutic targets to prevent reproductive sequelae in women infected with Chlamydia.

Nicholas, Robert A. email , , , , , , publications

My laboratory has two main interests: 1) Regulation of P2Y receptor signaling and trafficking in epithelial cells and platelets. Our laboratory investigates the cellular and molecular mechanisms by which P2Y receptors are differentially targeted to distinct membrane surfaces of polarized epithelial cells and the regulation of P2Y receptor signaling during ADP-promoted platelet aggregation. 2) Antibiotic resistance mechanisms. We investigate the mechanisms of antibiotic resistance in the pathogenic bacterium, Neisseria gonorrhoeae. Our laboratory investigates how acquisition of mutant alleles of existing genes confers resistance to penicillin and cephalosporins. We also study the biosynthesis of the gonococcal Type IV pilus and its contribution to antibiotic resistance.

Peden, David B. email , publications

Translational and clinical research in environmental lung disease.

Pickles, Raymond J. email , , , publications

My laboratory, located in the Cystic Fibrosis/Pulmonary Research and Treatment Center in the Thurston-Bowles building at UNC, is interested in how respiratory viruses infect the airway epithelium of the conducting airways of the human lung.

Redinbo, Matt email , , , , , , , publications

The Redinbo Laboratory examines dynamic cellular processes using structural, chemical, molecular and cell biology. Our goals are to discover new drugs and to elucidate molecular pathways essential to human disease.  Current projects include developing the first drugs that target the human microbiome, unraveling the nature of innate immunity in the human lung, and discovering how microbial systems exchange genes, including those that encode antibiotic resistance.

Sartor, R. Balfour email , , , , publications

Our long term goals are to better define mechanisms of chronic intestinal inflammation and to identify areas for therapeutic intervention. Research in our laboratories is in the following four general areas: 1) Induction and perpetuation of chronic intestinal and extraintestinal inflammation by resident intestinal bacteria and their cell wall polymers, 2) Mechanisms of genetically determined host susceptibility to bacterial product,. 3) Regulation of immunosuppressive molecules in intestinal epithelial cells and 4) Performing clinical trials of novel therapeutic agents in inflammatory bowel disease patients.

Serody, Jonathan email , , , publications

Our laboratory is involved in studies to determine the mechanisms and proteins involved in the migration of alloreactive and regulatory T cells to organs involved in graft-versus-host disease after stem cell transplantation using mouse models.

Shank, Elizabeth email , , , , , , publications

My laboratory studies chemically mediated interactions between microbes, particularly those that lead to alterations in bacterial development. In the natural world, interspecies chemical communication contributes to the stability and function of complex microbial communities. We explore the mechanisms and molecules that microbes use to influence their microbial neighbors both in the laboratory and in natural environments using genetics, microscopy, chemical imaging, and next generation sequencing. Our goal is to gain insights into microbial ecology, identify compounds with novel bioactivities, and obtain chemical tools to manipulate bacterial behavior to our benefit.

Su, Lishan email , , , , , , , publications

Major areas of research: 1) HIV-1 Virology, Immuno-Pathology and Immuno-Therapy, 2) HBV Virology, Immuno-Pathology and Immuno-Therapy, 3) Novel Immune Therapeutics Including Adjuvants and Vaccines, and 4) Humanized Mouse Models of Human Liver and Immune System.  My laboratory studies both virology and immunology of HIV-1 and HBV persistent infection.  We focus on defining viral factors that counteract host innate anti-viral immunity.  We have also developed humanized mouse models to study human immuno-pathology of chronic HIV-1 and HBV infection in vivo.  We investigate how human immune cells are dysregulated and contribute to diseases during HIV-1 and HBV persistent infection.  We are currently focused on the HIV-1/pDC/IFN-I axis that plays a critical role in HIV-1 persistence and AIDS, and on the HBV/Macrophage interaction in liver diseases.  In addition, we are developing novel immune modulatory therapeutics including antibodies, adjuvants and vaccines.

Su, Maureen A email , , , publications

Our lab is interested in understanding the genetics of autoimmunity using both mouse models and patient samples. Our work is highly translational and aims to have direct relevance to human disease. One of our approaches is to study rare Mendelian autoimmunity syndromes in order to determine the contributions of a particular gene to developing autoimmunity. We have focused on Autoimmune Polyendocrinopathy Syndrome Type 1 (APS1 or APECED), a rare condition due to mutations in the Autoimmune Regulator (Aire) gene. We are interested in how Aire promotes tolerance and have utilized both APS1 mouse models and patient samples to study this disease. We are also interested in understanding how dysregulation of the immune system results in Type 1 Diabetes Mellitus, an autoimmune disease in which beta cells in pancreatic islets are destroyed. We are primarily using patient samples to study how the balance of suppressor of effector arms of the immune system become dysregulated.

Swanstrom, Ronald email , , , , , , publications

First, we study the complex HIV-1 population that exists within a person.  We use this complexity to ask questions about viral evolution, transmission, compartmentalization, and pathogenesis.  Second, we are exploring the impact of drug resistance on viral fitness and identifying new drug targets in the viral protein processing pathway.  Third, we participate in a collaborative effort to develop an HIV-1 vaccine.  Fourth, we are using mutagenesis to determine the role of RNA secondary structure in viral replication.

Tamayo, Rita email , , , , publications

Our lab studies the mechanisms facultative pathogens use to adapt to disparate and changing extracellular conditions. Our primary interest is in the ability of Vibrio cholerae, the causative agent of cholera, to persist in its native aquatic environment and also flourish in the host intestinal tract. We are addressing key questions about the role of cyclic diguanylate, a signaling molecule unique to and ubiquitous in bacteria, in the physiological adaptations of V. cholerae as it transits from the aquatic environment into a host. In addition, we are identifying and characterizing factors produced by V. cholerae during growth in a biofilm, a determinant of survival in aquatic environments, that contribute to virulence.  I will be accepting rotation students beginning in the winter of 2009.

Ting, Jenny email , , , , , , , , , , publications

Topics include gene discovery, genomics/proteomics, gene transcription, signal transduction, molecular immunology.  Disease relevant issues include infectious diseases, autoimmune and demyelinating disorders, cancer chemotherapy, gene linkage.

Tisch, Roland email , , , publications

Projects involve the study of cellular and molecular events involved in autoimmunity, and development and application of genetic vaccines to prevent and treat autoimmunity and cancer.

Vilen, Barbara email , , , , , publications

We are interested in understanding how autoreactive B cells become re-activated to secrete autoantibodies that lead to autoimmune disease.  Our research is focused on understanding how signal transduction through the B cell antigen receptor (BCR) and Toll Like Receptors (TLR) lead to secretion of autoantibodies in Systemic Lupus Erythematosus (SLE).

Wan, Yisong email , , , , publications

We are a molecular genetics laboratory studying immune functions by using mouse models. The focus of our research is to investigate the molecular mechanisms of immune responses under normal and pathological conditions. Our goal is to find therapies for various human immune disorders, such as autoimmunity (type 1 diabetes and multiple sclerosis), tumor and cancer, and inflammatory diseases (inflammatory bowel disease, asthma and arthritis).

Webster-Cyriaque, Jennifer email , , publications

A goal of the laboratory is to understand viral molecular pathogenesis in the oral cavity. We seek to understand the critical molecular interactions that occur between DNA viruses and the host that govern the development of oral disease.

Whitmire, Jason email , , publications

The Whitmire lab investigates how the adaptive immune system protects against virus infection.  The research is focused on understanding the mechanisms by which interferons, cytokines, and other accessory molecules regulate T cell numbers and functions following acute and chronic virus infections.  The goal is to identify and characterize the processes that differentiate memory T cells in vivo. The long-term objective is to develop strategies that improve vaccines against infectious diseases by manipulating these pathways.

Wolfgang, Matthew C. email , , , , , publications

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen responsible for a variety of diseases in individuals with compromised immune function. Dr. Wolfgang’s research focuses on the pathogenesis of Pseudomonas aeruginosa infection.  The goal of his research is to understand how this opportunistic pathogen coordinates the expression of virulence factors in response to the host environment. Projects in his laboratory focus on the regulation of intracellular cyclic AMP, a second messenger signaling molecule that regulates P. aeruginosa virulence. Dr. Wolfgang’s laboratory uses a combination of molecular genetics and biochemical approaches to understand how P. aeruginosa controls the synthesis, degradation and transport of cAMP in response to extracellular cues. Other related projects focus on the regulation and function of P. aeruginosa Type IV pili (TFP). TFP are cAMP regulated surface organelles that are critical for bacterial colonization of human mucosal tissue. In addition, the Wolfgang lab is actively involved in characterizing the lung microbiome of patients with chronic airway diseases and studying the interactions between P. aeruginosa and other bacterial species during mixed infections.