Faculty Database:
[ Phd Program: Genetics & Molecular Biology ]

Filter faculty by:
See All
NameEmailPhd ProgramResearch InterestsPublications
Ahmed, Shawn email , , , , , publications

Our research group utilizes the nematode C. elegans to investigate germ cell immortality: mechanisms that allow germ cells remain eternally youthful as they are transmitted from one generation to the next. We also study how telomerase functions at chromosome termini, as well as the consequences of telomere dysfunction.

Amelio, Antonio L. email , , , , , , , publications

Our laboratory is broadly interested in understanding the molecular mechanisms of transcriptional regulation by cell signaling pathways and the role of pathway cross-talk in cancer biology. In particular, the cAMP signaling cascade directs adaptive cellular responses to a variety of stress stimuli via a combination of acute affects arising from GS-protein coupled receptor (GPCR)-mediated activation of PKA and long-term affects resulting from transcriptional reprogramming directed by CREB and the CREB Regulated Transcription Coactivators (CTRCs). We are applying an interdisciplinary approach to study the consequences of aberrant activation of the cAMP/CREB/CRTC signal circuit on these adaptive responses and how cooperative signaling with other pathways promotes oncogenic processes in oral, head, and neck cancers.

Asokan, Aravind email , , , , , publications

Our research group is focused on combining the tools and principles of molecular biology and genetics with chemistry to generate a synthetic viral toolkit. The lab-derived synthetic viral entities are utilized to dissect mechanisms of viral tissue tropism, as new reagents for applications in genomics and proteomics and as new vectors for human gene therapy applications.

Baldwin, Albert S. email , , , , , , publications

Our laboratory studies an amazing regulatory factor known as NF-kappaB. This transcription factor controls key developmental and immunological functions and its dysregulation lies at the heart of virtually all major human diseases.

Bautch, Victoria email , , , , , , publications

Blood vessel formation in cancer and development; use mouse culture (stem cell derived vessels) and in vivo models (embryos and tumors); genetic, cell and molecular biological tools; how do vessels assemble and pattern?, dynamic image analysis.

Berg, Jonathan email , , , , , publications

My research group is broadly interested in the application of sequencing technologies in medical genetics and genomics, using a combination of wet lab and computational approaches.  As a clinician, I am actively involved in the care of patients with hereditary disorders, and the research questions that my group investigates have direct relevance to patient care.  One project uses genome sequencing in families with likely hereditary cancer susceptibility in order to identify novel genes that may be involved in monogenic forms of cancer predisposition.  Another major avenue of investigation examines the use of genome-scale sequencing in clinical medicine, ranging from diagnostic testing to newborn screening, to screening in healthy adults.

Bloom, Kerry email , , , , , , publications

Our objective is to understand the dynamic and structural properties of chromosomes during mitosis.  We use live cell imaging techniques to address how kinetochores are assembled, capture microtubules and promote faithful segregation of chromosomes.

Brenman, Jay email , , , , , , publications

The Brenman lab studies how a universal energy and stress sensor, AMP-activated protein kinase (AMPK) regulates cellular function and signaling.  AMPK is proposed to be a therapeutic target for Type 2 diabetes and Metabolic syndrome (obesity, insulin resistance, cardiovascular disease). In addition, AMPK can be activated by LKB1, a known human tumor suppressor. Thus AMPK signaling is not only relevant to diabetes but also cancer.  We are interested in molecular genetic and biochemical approaches to understand how AMPK contributes to neurodegeneration, metabolism/cardiac disease and cancer.

Brennwald, Patrick email , , , , , publications

We are interested in the mechanism by which eukaryotic cells are polarized and the role of vesicle transport plays in the determination and regulation of cell polarity and tumorigenesis.

Bultman, Scott email , , , , publications

Our lab is interested in the role of chromatin-modifying factors and epigenetics in mammalian development and disease. We are particularly interested in two major areas both of which make use of mouse models: (1) the role of BRG1 and SWI/SNF nucleosome-remodeling complexes in various aspects of hematopoiesis including regulation of globin gene expression and inflammation; (2) the role of dietary fiber and gut microflora on histone modifications, CpG methylation, and prevention of colorectal cancer.

Calabrese, J. Mauro email , , , , , , , , , publications

Our lab is trying to understand the mechanisms by which long noncoding RNAs orchestrate the epigenetic control of gene expression. Relevant examples of this type of gene regulation occur in the case of X-chromosome inactivation and autosomal imprinting. We specialize in genomics, but rely a combination of techniques —  including genetics, proteomics, and molecular, cell and computational biology — to study these processes in both mouse and human stem and somatic cell systems.

Caron, Kathleen email , , , , , publications

Gene targeting and state-of-the-art phenotyping methods are used to elucidate the reproductive and cardiovascular roles of the adrenomedullin system and to characterize the novel GPCR-signaling mechanism of Adm’s receptor and RAMP’s.

Conlon, Frank email , , , , , , publications

Our lab is studying the molecular mechanisms which are involved in the induction and proliferation and patterning of cardiac progenitor cell populations. To identify the molecular pathways involved in these processes, we have used Xenopus and mouse as model systems with particular focus on the endogenous role of genes implicated in the early steps of cardiogenesis and human congenital heart disease. Present projects in the lab involve embryological manipulations, tissue explant cultures, molecular screens as well as protein-DNA interaction experiments, biochemistry and promoter analysis.

Cook, Jeanette (Jean) email , , , , , , , publications

The Cook lab studies the major transitions in the cell division cycle and how perturbations in cell cycle control affect genome stability. We have particular interest in mechanisms that control protein abundance and localization at transitions into and out of S phase (DNA replication phase) and into an out of quiescence. We use a variety of molecular biology, cell biology, biochemical, and genetic techniques to manipulate and evaluate human cells as they proliferate or exit the cell cycle. We collaborate with colleagues interested in the interface of cell cycle control with developmental biology, signal transduction, DNA damage responses, and oncogenesis.

Copenhaver, Gregory P. email , , , , , publications

The primary research area my lab is the regulation of meiotic recombination at the genomic level in higher eukaryotes.  Genomic instability and disease states, including cancer, can occur if the cell fails to properly regulate recombination.  We have created novel tools that give our lab an unparalleled ability to find mutants in genes that control recombination. We use a combination of genetics, bioinformatics, computational biology, cell biology and genomics in our investigations.  A second research area in the lab is the role of centromere DNA in chromosome biology.  We welcome undergraduates, graduate students, postdoctoral fellows and visiting scientists to join our team.

Cox, Adrienne email , , , , , , publications

Our lab is interested in molecular mechanisms of oncogenesis, specifically as regulated by Ras and Rho family small GTPases. We are particularly interested in understanding how membrane targeting sequences of these proteins mediate both their subcellular localization and their interactions with regulators and effectors. Both Ras and Rho proteins are targeted to membranes by characteristic combinations of basic residues and lipids that may include the fatty acid palmitate as well as farnesyl and geranylgeranyl isoprenoids. The latter are targets for anticancer drugs; we are also investigating their unexpectedly complex mechanism of action. Finally, we are also studying how these small GTPases mediate cellular responses to ionizing radiation – how do cells choose whether to arrest, die or proliferate?

Crews, Stephen email , , , , , , publications

Research in the lab is focused on a genetic, cellular, and molecular understanding of Drosophila developmental neuroscience, including the following research areas – (1) Neuronal formation and differentiation, (2) Glial formation, migration, and axon-glial interactions, (3) Synaptic connectivity, and (4) Transcriptional regulation.

Damania, Blossom email , , , , , publications

The work in our laboratory is focused on understanding the molecular pathogenesis of Kaposi’s sarcoma-associated herpesvirus (KSHV), an oncogenic human virus. KSHV is associated with several types of cancer in the human population. We study the effect of KSHV viral proteins on cell proliferation, transformation, apoptosis, angiogenesis and cell signal transduction pathways. We also study viral transcription factors, viral replication, and the interactions of KSHV with the human innate immune system. Additionally, we are developing drug therapies that curb viral replication and target tumor cells.

Dangl, Jeff email , , , , , , , publications

We use the premier model plant species, Arabidopsis thaliana, and real world plant pathogens like the bacteria Pseudomonas syringae and the oomycete Hyaloperonospora parasitica to understand the molecular nature of the plant immune system, the diversity of pathogen virulence systems, and the evolutionary mechanisms that influence plant-pathogen interactions. All of our study organisms are sequenced, making the tools of genomics accessible.

Davis, Ian email , , , , publications

With a particular interest in pediatric solid tumors, our lab aims to develop a mechanistic understanding of the role of aberrant or dysregulated transcription factors in oncogenesis.

Der, Channing email , , , , , , , publications

Our research centers on understanding the molecular basis of human carcinogenesis. In particular, a major focus of our studies is the Ras oncogene and Ras-mediated signal transduction.  The goals of our studies include the delineation of the complex components of Ras signaling and the development of anti-Ras inhibitors for cancer treatment.  Another major focus of our studies involves our validation of the involvement of Ras-related small GTPases (e.g., Ral, Rho) in cancer.  We utilize a broad spectrum of technical approaches that include cell culture and mouse models, C. elegans, protein crystallography, microarray gene expression or proteomics analyses, and clinical trial analyses.

Dittmer, Dirk email , , , , , publications

Our lab tries to understand viral pathogenesis. To do so, we work with two very different viruses – West Nile Virus (WNV) and Kaposi¹s sarcoma-associated herpesvirus (KSHV/HHV-8).

Dowen, Jill email , , , , , , publications

My lab studies how genes function within the three-dimensional context of the nucleus to control development and prevent disease. We combine genomic approaches (ChIP-Seq, ChIA-PET) and genome editing tools (CRISPR) to study the epigenetic mechanisms by which transcriptional regulatory elements control gene expression in embryonic stem cells.  Our current research efforts are divided into 3 areas: 1) Mapping the folding pattern of the genome 2) Dynamics of three-dimensional genome organization as cells differentiate and 3) Functional analysis of altered chromosome structure in cancer and other diseases.

Duronio, Bob email , , , , , publications

My lab studies how cell proliferation is controlled during animal development, with a focus on the genetic and epigenetic mechanisms that regulate DNA replication and gene expression throughout the cell cycle. Many of the genes and signaling pathways that we study are frequently mutated in human cancers. Our current research efforts are divided into three areas:  1) Plasticity of cell cycle control during development  2) Histone mRNA biosynthesis and nuclear body function  3) Epigenetic control of genome replication and function

Emanuele, Michael email , , , , , publications

Our lab applies cutting edge genetic and proteomic technologies to unravel dynamic signaling networks involved in cell proliferation, genome stability and cancer. These powerful technologies are used to systematically interrogate the ubiquitin proteasome system (UPS), and allow us to gain a systems level understanding of the cell at unparalleled depth. We are focused on UPS signaling in cell cycle progression and genome stability, since these pathways are universally perturbed in cancer.

Errede, Beverly email , , , publications

Yeast molecular genetics; MAP-Kinease activation pathways; regulation of cell differentiation.

Everett, Eric T email , , , , , publications

Our research focuses upon craniofacial and mineralized tissue genetics; gene: environment interactions; mapping of complex traits; normal variation (to the extent that normal variation becomes abnormal); and animal models for oral/dental/craniofacial disorders.

Franco, Hector L. email , , , , , publications

My lab has a long-standing interest in gene regulation, epigenetics, chromatin and RNA biology, especially as it pertains to cancer. We are interested in studying the formation and function of transcriptional enhancers and the non-coding RNAs that are actively produced at enhancers, known as enhancer RNAs, which are involved in modulating several aspects of gene regulation. In addition, we aim to understand how transcriptional enhancers help orchestrate responses to external stimuli found in the tumor microenvironment. We address these research aims by using an interdisciplinary approach that combines molecular and cellular techniques with powerful genomic and computational approaches.

Giudice, Jimena email , , , , , publications

During development transcriptional and posttranscriptional networks are coordinately regulated to drive organ maturation, tissue formation, and cell fate. Interestingly, more than 90% of the human genes undergo alternative splicing, a posttranscriptional mechanism that explains how one gene can give rise to multiple protein isoforms. Heart and skeletal muscle are two of the tissues where the most tissue specific splicing takes place raising the question of how developmental stage- and tissue-specific splicing influence protein function and how this regulation occurs. In my lab we are interested on two exciting aspects of this broad question: i) how alternative splicing of trafficking and membrane remodeling genes contributes to muscle development, structure, and function, ii) the coupling between epigenetics and alternative splicing in postnatal heart development.

Goldstein, Bob email , , , , , , publications

We address fundamental issues in cell and developmental biology, issues such as how cells move to specific positions, how the orientations of cell divisions are determined, how the mitotic spindle is positioned in cells, and how cells respond to cell signaling – for example Wnt signaling, which is important in development and in cancer biology. We are committed to applying whatever methods are required to answer important questions. As a result, we use diverse methods, including methods of cell biology, developmental biology, forward and reverse genetics including RNAi, biochemistry, biophysics, mathematical and computational modeling and simulations, molecular biology, and live microscopy of cells and of the dynamic components of the cytoskeleton – microfilaments, microtubules, and motor proteins. Most experiments in the lab use C. elegans embryos, and we have also used Drosophila and Xenopus recently. C. elegans is valuable as a model system because of the possibility of combining the diverse techniques above to answer a wide array of interesting questions. We also have a project underway to develop a new model system for studying how cellular and developmental mechanisms evolve, using little-studied organisms called water bears. Rotating graduate students learn to master existing techniques, and students who join the lab typically grow their rotation projects into larger, long term projects, and/or develop creative, new projects.

Grant, Sarah email , , , , , publications

Our research goal is to understand how bacterial pathogens cause disease on their hosts. We are working with a plant pathogen, Pseudomonas syringae which introduces virulence proteins into host cells to suppress immune responses. Our laboratory collaborates with Jeff Dangl’s lab in the UNC Biology Department using genomics approaches to identify P. syringae virulence proteins and to discover how they alter plant cell biology to evade the plant immune system and cause disease.

Griffith, Jack email , , , , , , publications

We are interested in basic DNA-protein interactions as related to – DNA replication, DNA repair and telomere function.  We utilize a combination of state of the art molecular and biochemical methods together with high resolution electron microscopes.

Hathaway, Nathaniel A. email , , , , , publications

The Hathaway lab is focused on understanding the biological events responsible for dynamically regulating the selective expression of the mammalian genome. In multicellular organisms, genes must be regulated with high precision during stem cell differentiation to achieve normal development. Pathologically, the loss of proper gene regulation caused by defects in chromatin regulatory enzymes has been found to be a driving force in cancer initiation and progression. My lab uses a combination of chemical biology and cell biology approaches to unravel the molecular mechanisms that govern gene expression. We utilize new tools wielding an unprecedented level of temporal control to visualize changes in chromatin structure and function in mammalian cells and animal models. In addition, we seek to identify small molecule inhibitors that are selective for chromatin regulatory enzymes with the potential for future human therapeutics.

Heise, Mark email , , , , , publications

We study alphavirus infection to model virus-induced disease.  Projects include 1) mapping viral determinants involved in encephalitis, and 2) using a mouse model of virus-induced arthritis to identify viral and host factors associated with disease.

Hirsch, Matthew email , , , , , publications

Our lab works with adeno-associated viral vectors for both the characterization of vector and host responses upon transduction and as therapeutic agents for the treatment of genetic diseases.  In particular, we tend to focus on the 145 nucleotide viral inverted terminal repeats of the transgenic genome and their multiple functions including the replication initiation, inherent promoter activity, and stimulation of intra/inter molecular DNA repair pathways.  The modification of the AAV ITRs by synthetic sequences imparts unique functions/activities rendering these synthetic vectors perhaps better suited for therapeutic applications.

Ideraabdullah, Folami Y email , , , , publications

The lab focus is to understand the mechanism of gene-environment interactions by examining the genetic basis of epigenetic response to nutrition and environmental toxicants. The long-term goal is to identify and characterize genetic (naturally occurring and induced) and environmental (toxicant and nutritional) causes of disruption of DNA methylation patterns during development and to determine their role in disease. The primary focus is on DNA methylation patterns during germ cell and early embryonic development during critical windows of epigenetic reprogramming.

Jones, Corbin email , , , , , , publications

The goal of my research is to identify, clone, and characterize the evolution of genes underlying natural adaptations in order to determine the types of genes involved, how many and what types of genetic changes occurred, and the evolutionary history of these changes. Specific areas of research include: 1) Genetic analyses of adaptations and interspecific differences in Drosophila, 2) Molecular evolution and population genetics of new genes and 3) Evolutionary analysis of QTL and genomic data.

Juliano, Jonathan email , , , , publications

Despite recent success in reducing malaria transmission, the estimated annual numbers of malaria infections (~225 million) and deaths (~781,000) remain high. Despite this immense burden, our understanding of the genetic diversity of malaria and the factors that promote this diversity is limited.  This diversity among plasmodial parasites has a critical impact on many factors involved in the control of infections, including: 1) development of drug resistance, 2) development of naturally acquired immunity, and 3) vaccine design.  My laboratory’s primary interests are: 1) describing the genetic diversity of P. falciparum using molecular biological and next generation sequencing tools, and 2) using these data to understand the evolutionary and ecological factors that drive this diversity, promote the emergence of drug resistance and affect our ability to effectively develop immunity.

Kafri, Tal email , , , , publications

Our lab is focused on the development of HIV-1 vectors for gene therapy of genetic disease.  In addition, we are using the vector system to study HIV-1 biology.  We are also interested in utilizing the HIV-1 vector system for functional genomics.

Kelada, Samir email , , , , , publications

While both genes and environment are thought to influence human health, most investigations of complex disease only examine one of these risk factors in isolation.  Accounting for both types of risk factors and their complex interactions allows for a more holistic view of complex disease causation.  The Kelada lab is focused on the identification and characterization of these gene-environment interactions in airway diseases, particularly asthma, a disorder of major public health importance.   /  / Additionally, to gain insight into how the airway responds to relevant exposures (e.g., allergens or pathogens), we study gene expression in the lung (particularly airway epithelia). Our goal is identify the genetic determinants of gene expression by measuring gene expression across many individuals (genotypes). / This “systems genetics” approach allows us to identify master regulators of gene expression that may underlie disease susceptibility or represent novel therapeutic targets. /

Kieber, Joe email , , , , , publications

Hormones influence virtually every aspect of plant growth and development. My lab is examining the molecular mechanisms controlling the biosynthesis and signal transduction of the phytohormones cytokinin and ethylene, and the roles that these hormones play in various aspects of development. We employ genetic, molecular, biochemical, and genomic approaches using the model species Arabidopsis to elucidate these pathways.

Kim, WIlliam Y email , , , , , publications

Our research explores the role of hypoxia-inducible factor (HIF) in tumorigenesis. HIF is a transcription factor that plays a key role in oxygen sensing, the adaptation to hypoxia and the tumor microenvironment. It is expressed in the majority of solid tumors and correlates with poor clinical outcome. Therefore, HIF is a likely promoter of solid tumor growth and angiogenesis.  Our lab uses mouse models to ask if and how HIF cooperates with other oncogenic events in cancer.  We are currently investigating HIF’s role in the upregulation of circulating tumor cells and circulating endothelial cells.

Maddox, Amy Shaub email , , , , , , , publications

My research philosophy is summed up by a quote from Nobelist Albert Szent-Gyorgyi: “Discovery is to see what everybody has seen and to think what nobody has thought.” My lab studies the molecular and physical mechanisms of cell shape change during cytokinesis and tissue biogenesis during development. Specifically, we are defining how cells ensure proper alignment and sliding of cytoskeletal filaments, and determining the shape of the cell throughout division. To do so, we combine developmental biology, cell biology, biochemistry, and quantitative image analysis.

Maddox, Paul S. email , , , publications

My research program is centered on understanding fundamental aspects of cell division. During cell division, complex DNA-protein interactions transform diffuse interphase chromatin into discrete mitotic chromosomes, condensing them several thousand fold to facilitate spatial segregation of sister chromatids. Concomitantly, kinetochores form specifically at centromere regions of chromosomes and regulate force-producing interactions with microtubules. While these processes are absolutely required for genomic stability, the in vivo mechanisms of chromosome and kinetochore assembly remain unsolved problems in biology. I investigate 1) the spatiotemporal regulation of mitotic chromosome assembly, and 2) the molecular basis of centromere specification. To do so, I will combine biochemical approaches with high-resolution light microscopy of live cells, whole organisms, and in vitro systems.

Maeda, Nobuyo N. email , , , , , , , publications

Our research is focused on the genetics and molecular pathology of complex multi-factorial conditions in humans – obesity, diabetes, hypercholesterolemia, insulin resistance, and hypertension.  These conditions underlie cardiovascular diseases, including atherosclerosis, the major cause of death and disabilities in North America. Our approach consists of experiments with mice carrying modifications in various genes important for the maintenance of vascular function, antioxidant defense, and metabolism.  We dissect how gene-gene and gene-environment interaction influences the pathogenesis of these common human conditions and their complications.

Magnuson, Terry email , , , , , publications

The Magnuson Lab works in three areas – (i) Novel approaches to allelic series of genomic modifications in mammals, (ii)Mammalian polycomb-group complexes and development, (iii) Mammalian Swi/Snf chromatin remodeling complexes

Marzluff, William email , , , , , , , , , publications

We are interested in the mechanisms by which histone protein synthesis is coupled to DNA replication, both in mammalian cell cycle and during early embryogenesis in Drosophila, Xenopus and sea urchins.

Matera, Greg email , , , , , , , publications

Research in our laboratory is focused on RNA. We aim to understand how ribonucleoprotein particles (snRNPs, mRNPs, etc.) are transcribed, packaged and transported to their final destinations in the cell.  We are also interested in the genetic and epigenetic forces that direct formation of microscopically visible subcellular structures (e.g. nuclear bodies). We use a combination of approaches, including Drosophila genetics, molecular cell biology, biochemistry, digital imaging microscopy and genome-wide analyses. Projects in the lab are focused on two areas:  models of a neurogenetic disease called Spinal Muscular Atrophy (SMA) and the functional analysis of post-translational modifications of chromatin and RNA-binding proteins important in cancer and other diseases.

McKay, Daniel email , , , , , , publications

Research in the lab focuses on how a single genome gives rise to a variety of cell types and body parts during development. We use Drosophila as a model organism to investigate (1) how transcription factors access DNA to regulate complex patterns of gene expression, and (2) how post-translational modification of histones contributes to maintenance of gene expression programs over time. We combine genomic approaches (e.g. chromatin immunoprecipitation followed by high-throughput sequencing) with Drosophila genetics and transgenesis to address both of these questions. Defects in cell fate specification and maintenance of cell identity often occur in human diseases, including cancer.

Miller, C. Ryan email , , , , , , , , , , publications

My laboratory studies diffuse gliomas, devastating primary tumors of the central nervous system for which few effective drugs are currently available.  We utilize genetically engineered mice, cell culture, and human tumor model systems to explore the molecular pathogenesis of gliomas.  We utilize animal model systems to develop drugs and diagnostic markers for their individualized therapy.  Rotating students gain experience with multiple techniques, including cell culture, molecular biology, genomics, genetic lineage tracing, fluorescence microscopy, and digital image analysis.

Miller, Virginia L email , , , publications

Molecular genetic analysis of virulence of Yersinia and Klebsiella: My laboratory uses Yersinia enterocolitica, Y. pestis, and Klebsiella as model systems to study bacterial pathogenesis. The long-term goals of our work are to understand the bacteria-host interaction at the molecular level to learn how this interaction affects the pathogenesis of infections and to understand how these pathogens co-ordinate the expression of virulence determinants during an infection. To do this we use genetic, molecular and immunological approaches in conjunction with the mouse model of infection.

Mohlke, Karen email , , , , , publications

We identify genetic variants that influence common human traits with complex inheritance patterns, and we examine the molecular and biological mechanisms of the identified variants and the genes they affect. Currently we are investigating susceptibility to type 2 diabetes and obesity, and variation in cholesterol levels, body size, body shape, and metabolic traits. We detect allelic differences in chromatin structure and gene expression and examine gene function in human cell lines and tissues. In addition to examining the primary effects of genes, the lab is exploring the interaction of genes with environmental risk factors in disease pathogenesis. Approaches include genome-wide association studies, molecular biology, cell biology, genetic epidemiology, sequencing, and bioinformatic analysis of genome-wide data sets.

Nimchuk, Zachary email , , , , , , publications

Understanding how cells communicate and co-ordinate during development is a universal question in biology. My lab studies the cell to cell signaling systems that control plant stem cell production.  Plants contain discrete populations of self-renewing stem cells that give rise to the diverse differentiated cell types found throughout the plant.  Stem cell function is therefore ultimately responsible for the aesthetic and economic benefits plants provide us. Stem cell maintenance is controlled by overlapping receptor kinases that sense peptide ligands. Receptor kinase pathways also integrate with hormone signaling in a complex manner to modulate stem cell function.  My lab uses multiple approaches to dissect these networks including; genetics, genomics, CRISPR/Cas9 genome editing, live tissue imaging, and cell biological and biochemical methods.  This integrated approach allows us to gain an understanding of the different levels at which regulatory networks act and how they contribute to changes in form and function during evolution.

Pardo-Manuel de Villena, Fernando email , , , , , , publications

Non-Mendelian genetics including, meiotic drive, parent-of-orifin effects and allelic exclusion.

Parise, Leslie email , , , , , , , , publications

The overall goal of our laboratory is to understand the molecular interface between cell signaling and adhesion receptors in blood diseases and cancer in order to develop novel therapeutic targets and approaches. One area of study is platelets because they become activated by cellular signals and adhere to each other and the blood vessel wall via specific adhesion receptors. These events can block blood flow, causing heart attacks and stroke, the leading causes of death in the US. Another area of research is sickle cell disease, since red blood cells in these patients are abnormally adhesive and also cause blood vessel blockages. A third area is cancer since cancer cells use similar cellular signals and adhesion receptors in tumorigenesis and metastasis. Our work involves a wide array  of technologies that include molecular, structural and cellular approaches as well as clinical/translational studies with human patients.

Pecot, Chad Victor email , , , , publications

The development of metastases is the cause of death in nearly all cancer patients, yet the mechanisms driving metastatic biology remain poorly understood. Also, few cancer therapeutics are being developed to specifically control this problem. My laboratory is interested in discovering novel mechanisms that drive metastatic biology, and in utilizing RNA interference (RNAi) strategies (such as nanoparticle delivery of miRNAs/siRNAs) to control this process. We will apply integrative analysis of large bioinformatic datasets, in vitro studies for mechanistic validation, and in vivo metastasis models to assess therapeutic efficacy of our RNAi approaches.

Peifer, Mark email , , , , , , , publications

Cell adhesion, signal transduction, and cytoskeletal regulation during embryogenesis and in cancer.  We focus on the regulation of cadherin-based cell-cell adhesion, and on Wnt signaling and its regulation by the tumor suppressor APC.

Perou, Charles M. email , , , , , , , publications

The focus of my lab is to characterize the biological diversity of human tumors using genomics, genetics, and cell biology, and then to use this information to develop improved treatments that are specific for each tumor subtype and for each patient. A significant contribution of ours towards the goal of personalized medicine has been in the genomic characterization of human breast tumors, which identified the Intrinsic Subtypes of Breast Cancer. We study many human solid tumor disease types using multiple experimental approaches including RNA-sequencing (RNA-seq), DNA exome sequencing, Whole Genome Sequencing, cell/tissue culturing, and Proteomics, with a particular focus on the Basal-like/Triple Negative Breast Cancer subtype. In addition, we are mimicking these human tumor alterations in Genetically Engineered Mouse Models, and using primary tumor Patient-Derived Xenografts, to investigate the efficacy of new drugs and new drug combinations. All of these genomic and genetic studies generate large volumes of data; thus, a significant portion of my lab is devoted to using genomic data and a systems biology approach to create computational predictors of complex cancer phenotypes.

Purvis, Jeremy email , , , , , publications

We study the behavior of individual cells with a specific focus on “irreversible” cell fate decisions such as apoptosis, senescence, and differentiation. Why do genetically identical cells choose different fates? How much are these decisions controlled by the cell itself and how much is influenced by its environment? We address these questions using a variety of experimental and computational approaches including time-lapse microscopy, single-molecule imaging, computational modeling, and machine learning. Our ultimate goal is to not only understand how cells make decisions under physiological conditions—but to discover how to manipulate these decisions to treat disease.

Pylayeva-Gupta, Yuliya email , , , , publications

The goal of my research is to define molecular mechanisms of immune cell co-option by cancer cells, with the hope of identifying novel targets for immune cell reprogramming. Central to our approach is analysis immune cell subtypes in KRas-driven models of pancreatic cancer. We use cell and animals models to study signals important for pro-tumorigenic activity of immune cells, as well as define role of physiologically relevant oncogenic mutations in driving these signals and enabling immune escape.

Ramsden, Dale email , , , , , publications

The end joining pathway is a major means for repairing chromosome breaks in vertebrates.  My lab is using cellular and cell-free models to learn how end joining works, and what happens when it doesn’t.

Reed, Jason email , , , , , publications

Regulation of plant development:  We use techniques of genetics, molecular biology, microscopy, physiology, and biochemistry to study how endogenous developmental programs and exogenous signals cooperate to determine plant form.  The model plant Arabidopsis thaliana has numerous technical advantages that allow rapid experimental progress.  We focus on how the plant hormone auxin acts in several different developmental contexts.  Among questions of current interest are i) how auxin regulates patterning in embryos and ovules, ii) how light modifies auxin response, iii) how feedback loops affect kinetics or patterning of auxin response, iv) how flower opening and pollination are regulated, and v) whether natural variation in flower development affects rates of self-pollination vs. outcrossing.

Rogers, Steve email , , , , , , publications

The research in our lab is centered on understanding the mechanisms and principles of movement at the cellular level. Cytoskeletal filaments – composed of actin and microtubules – serve as a structural scaffolding that gives cells the ability to divide, crawl, and change their shape.  Our lab uses a combination of cell biological, biochemical, functional genomic, and  high resolution imaging techniques to study cytoskeletal dynamics and how they contribute to cellular motion.

Samulski, Jude email , , , , , publications

We are engaged in studying the molecular biology of the human parvovirus adeno-associated virus (AAV) with the intent to using this virus for developing a novel, safe, and efficient delivery system for human gene therapy.

Sancar, Aziz email , , , , , publications

We have three main areas of research focus: (1) Nucleotide excision repair: The only known mechanism for the removal of bulky DNA adducts in humans. (2) DNA damage checkpoints:  Biochemical pathways that transiently block cell cycle progression while DNA contains damage.  (3) Circadian rhythm:  The oscillations in biochemical, physiological and behavioral processes that occur with the periodicity of about 24 hours.

Sekelsky, Jeff email , , , , publications

Genome instability is a major cause of cancer. We use the model organism Drosophila melanogaster to study maintenance of genome stability, including DNA double-strand break repair, meiotic and mitotic recombination, and characterization of fragile sites in the genome.  Our primary approaches are genetic (forward and reverse, transmission and molecular), but we are also using biochemistry to study protein complexes of interest, genomics to identify fragile sites and understand the regulation of meiotic recombination, fluorescence and electron microscopy for analysis of mutant phenotypes, and cell culture for experiments using RNA interference.

Shank, Elizabeth email , , , , , , publications

My laboratory studies chemically mediated interactions between microbes, particularly those that lead to alterations in bacterial development. In the natural world, interspecies chemical communication contributes to the stability and function of complex microbial communities. We explore the mechanisms and molecules that microbes use to influence their microbial neighbors both in the laboratory and in natural environments using genetics, microscopy, chemical imaging, and next generation sequencing. Our goal is to gain insights into microbial ecology, identify compounds with novel bioactivities, and obtain chemical tools to manipulate bacterial behavior to our benefit.

Sheikh, Shehzad Z email , , publications

We seek to understand how information is encoded and dynamically utilized in immune cells from healthy and disease prone intestines (The Inflammatory Bowel Diseases: Crohn’s disease and Ulcerative Colitis). Our lab is multi-disciplinary and combines high-throughput genomics with innate immunity and microbiology. We focus specifically on genes that regulate response to the bacteria that normally reside in our intestines. Many of these genes make products that regulate the immune system in the intestine. These products defend the intestine against the attack of foreign materials; such as bacteria that live in the intestine. We use genome-sequencing technology to precisely identify regions throughout the genome that are potential ‘on’ or ‘off’ switches for these genes. There is a fine balance between the genes that produce inflammatory substances that are necessary to kill bacteria and genes that produce anti-inflammatory substances that are important to prevent damage to the intestine. If this balance between inflammatory and anti-inflammatory substance production in the intestine is disrupted, IBD may result. Our lab focuses on understanding how these important controllers of inflammation are turned on and off in IBD. We also study how inflammatory and anti-inflammatory signals impact disease severity, progression and response to therapy in individuals with IBD. This information has the potential to increase our understanding of causes of IBD (personalized medicine) and to contribute to the development of new treatments.

Shiau, Celia email , , , , , , , publications

The Shiau Lab is integrating in vivo imaging, genetics, genome editing, functional genomics, bioinformatics, and cell biology to uncover and understand innate immune functions in development and disease. From single genes to individual cells to whole organism, we are using the vertebrate zebrafish model to reveal and connect mechanisms at multiple scales. Of particular interest are 1) the genetic regulation of macrophage activation to prevent inappropriate inflammatory and autoimmune conditions, and 2) how different tissue-resident macrophages impact vertebrate development and homeostasis particularly in the brain and gut, such as the role of microglia in brain development and animal behavior.

Slep, Kevin email , , , , , , , publications

Our lab examines cytoskeletal dynamics, the molecules that regulate it and the biological processes it is involved in using live cell imaging, in vitro reconstitution and x-ray crystallography.  Of particular interest are the microtubule +TIP proteins that dynamically localize to microtubule plus ends, communicate with the actin network, regulate microtubule dynamics, capture kinetochores and engage the cell cortex under polarity-based cues.

Strahl, Brian D. email , , , , , publications

Our laboratory is examining the role of histone post-translational modifications in chromatin structure and function.  Using a combination of molecular biology, genetics and biochemistry, we are determining how a number of modifications to the histone tails (e.g. acetylation, phosphorylation, methylation and ubiquitylation) contribute to the control of gene transcription, DNA repair and replication.

Su, Lishan email , , , , , , , publications

Major areas of research: 1) HIV-1 Virology, Immuno-Pathology and Immuno-Therapy, 2) HBV Virology, Immuno-Pathology and Immuno-Therapy, 3) Novel Immune Therapeutics Including Adjuvants and Vaccines, and 4) Humanized Mouse Models of Human Liver and Immune System.  My laboratory studies both virology and immunology of HIV-1 and HBV persistent infection.  We focus on defining viral factors that counteract host innate anti-viral immunity.  We have also developed humanized mouse models to study human immuno-pathology of chronic HIV-1 and HBV infection in vivo.  We investigate how human immune cells are dysregulated and contribute to diseases during HIV-1 and HBV persistent infection.  We are currently focused on the HIV-1/pDC/IFN-I axis that plays a critical role in HIV-1 persistence and AIDS, and on the HBV/Macrophage interaction in liver diseases.  In addition, we are developing novel immune modulatory therapeutics including antibodies, adjuvants and vaccines.

Sullivan, Patrick email , , , , , publications

I study complex traits using linkage, association, and genetic epidemiological approaches.  Disorders include schizophrenia (etiology and pharmacogenetics), smoking behavior, and chronic fatigue.

Swanstrom, Ronald email , , , , , , publications

First, we study the complex HIV-1 population that exists within a person.  We use this complexity to ask questions about viral evolution, transmission, compartmentalization, and pathogenesis.  Second, we are exploring the impact of drug resistance on viral fitness and identifying new drug targets in the viral protein processing pathway.  Third, we participate in a collaborative effort to develop an HIV-1 vaccine.  Fourth, we are using mutagenesis to determine the role of RNA secondary structure in viral replication.

Tarantino, Lisa M. email , , , , , , , , publications

The Tarantino lab studies addiction and anxiety-related behaviors in mouse models using forward genetic approaches. We are currently studying a chemically-induced mutation in a splice donor site that results in increased novelty- and cocaine-induced locomotor activity and prolonged stress response. We are using RNA-seq to identify splice variants in the brain that differ between mutant and wildtype animals. We are also using measures of initial sensitivity to cocaine in dozens of inbred mouse strains to understand the genetics, biology and pharmacokinetics of acute cocaine response and how initial sensitivity might be related to addiction. Finally, we have just started a project aimed at studying the effects of perinatal exposure to dietary deficiencies on anxiety, depression and stress behaviors in adult offspring. This study utilizes RNA-seq and a unique breeding design to identify parent of origin effects on behavior and gene expression in response to perinatal diet.

Ting, Jenny email , , , , , , , , , , publications

Topics include gene discovery, genomics/proteomics, gene transcription, signal transduction, molecular immunology.  Disease relevant issues include infectious diseases, autoimmune and demyelinating disorders, cancer chemotherapy, gene linkage.

Vaziri, Cyrus email , , , , , , publications

Our broad long-term goal is to understand how mammalian cells maintain ordered control of DNA replication during normal passage through an unperturbed cell cycle, and in response to genotoxins (DNA-damaging agents).  DNA synthesis is a fundamental process for normal growth and development and accurate replication of DNA is crucial for maintenance of genomic stability.  Many cancers display defects in regulation of DNA synthesis and it is important to understand the molecular basis for aberrant DNA replication in tumors.  Moreover, since many chemotherapies specifically target cells in S-phase, a more detailed understanding of DNA replication could allow the rational design of novel cancer therapeutics.  Our lab focuses on three main aspects of DNA replication control:  (1) The S-phase checkpoint, (2) Trans-Lesion Synthesis (TLS) and (3) Re-replication.

Vision, Todd email , , , , , , publications

Our lab uses computational and molecular tools to study the evolution of genome organization, primarily in the flowering plants. Areas of
investigation include the origin and consequences of differences in gene order within populations and between species, the evolutionary and functional diversification of gene families (phytome.org), and the application of genomics to evolutionary model organisms (mimulusevolution.org).  We also are involved in a number of cyberinfrastructure initiatives through the National Evolutionary Synthesis Center (nescent.org), including work on digital scientific libraries (datadryad.org), open bioinformatic software development (e.g. gmod.org) and the application of semantic web technologies to biological data integration (phenoscape.org).

Wang, Greg Gang email , , , , , publications

With an emphasis on chromatin biology and cancer epigenetics, our group focuses on mechanistic understandings of how chemical modifications of chromatin define distinct patterns of human genome, control gene expression, and regulate cell proliferation versus differentiation during development, and how their deregulations lead to oncogenesis. Multiple on-going projects employ modern biological technologies to: 1) biochemically isolate and characterize novel factors that bind to histone methylation on chromatin, 2) examine the role of epigenetic factors (chromatin-modifying enzymes and chromatin-associated factors) during development and tumorigenesis using mouse knockout models, 3) analyze epigenomic and transcriptome alternation in cancer versus normal cells utilizing next-generation sequencing technologies, 4) identify novel oncogenic or tumor suppressor genes associated with leukemia and lymphoma using shRNA library-based screening. We are also working together with UNC Center of Drug Discovery to develop small-molecule inhibitors for chromatin-associated factors as novel targeted cancer therapies.

Weiss, Ellen email , , , , , , publications

The vertebrate retina is an extension of the central nervous system that controls visual signaling and circadian rhythm.  Our laboratory is interested in how the retina adapts to changing light intensities in the natural environment.  We are presently studying the regulation of 2 G protein-coupled receptor kinases, GRK1 and GRK7, that participate in signal termination in the light-detecting cells of the retina, the rods and cones.  Signal termination helps these cells recover from light exposure and adapt to continually changing light intensities.  Recently, we determined that GRK1 and GRK7 are phosphorylated by cAMP-dependent protein kinase (PKA).  Since cAMP levels are regulated by light in the retina, phosphorylation by PKA may be important in recovery and adaptation.  Biochemical and molecular approaches are used in 2 model organisms, mouse and zebrafish, to address the role of PKA in retina function. Keywords:  cAMP, cone, G protein-coupled receptor, GPCR, GRK, kinase, neurobiology, opsin, PKA, retina, rhodopsin rod, second messenger, signal transduction, vision.

Weissman, Bernard E. email , , , , , publications

How the loss of different components of the SWI/SNF complex contributes to neoplastic transformation remains an open and important question. My laboratory concentrates on addressing this question by the combined use of biological, biochemical and mouse models for SWI/SNF complex function.

Wilhelmsen, Kirk email , , , , publications

The Wilhelmsen lab is engaged in the genetic mapping of susceptibility loci for complex neurological diseases and has been developing large-scale automated gene mapping technologies to facilitate these mapping efforts. They have invested heavily in automation that enables high-throughput genotyping and data processing. As data accumulates, this will enable parametric and nonparametric linkage analysis of large numbers of traits at regular intervals for the entire genome. The Wilhelmsen lab is applying these techniques to two projects: (1) the genetics of alcoholism and (2) positional cloning of the gene responsible for a family of disorders called frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17).

Williams, Scott E. email , , , , , , , , publications

Divisions and decisions in development and disease. The mammalian skin epithelium is an ideal model system to study fundamental questions in stem cell and cancer biology. It is accessible; it can be cultured, genetically manipulated and transplanted; and its resident stem cells possess unparalleled regenerative capacity. Our skin, unlike many other organs, undergoes continuous growth and turnover. In development and homeostasis, progenitors in the skin must balance self-renewal and differentiation programs. We have found that asymmetric cell divisions are a critical mechanism by which skin progenitors maintain this equilibrium. We are interested in studying how this asymmetry is controlled at a molecular level, and how division orientation impacts cell fate choices in normal and neoplastic growth. To facilitate these and other studies in diverse epithelia, we have developed a powerful functional tool, lentiviral in vivo RNAi, which allows us to rapidly perform functional studies on any gene in the intact mouse in weeks instead of years. Our broad goal will be to use this technique, in combinations of candidate and screening approaches, to dissect pathways that influence stem cell differentiation. I will be joining the Pathology Department in April, 2013 and am seeking passionate, open-minded, and interactive students for the summer and beyond.

Xiong, Yue email , , , , , publications

Using genetic, cell biology, biochemical and proteomic approaches to determine the function and mechanism of – (1) CDK inhibitors in development and tumor suppression, (2) the p53 degradation and transport, and (3) RING family of ubiquitin ligases.

Yeh, Jen Jen email , , , , publications

We are a translational research lab. The overall goal of our research is to find therapeutic targets and biomarkers for patients with pancreatic and colorectal cancer and to translate this to the clinic. In order to accomplish this, we analyze patient tumors using microarray analysis, identify and validate targets using forward and reverse genetic approaches in both cell lines and mouse models. At the same time, we evaluate novel therapeutics for promising targets in mouse models in order to better predict clinical response in humans. We also collaborate with the DeSimone and Huang labs to apply nanotechnology to drug delivery and therapeutics. Keywords: genomics, biomarkers, translational research, microarray, signaling, pancreatic cancer, colon cancer, mouse models, GEMM, drug discovery, nanoparticles.

Zhang, Qing email , , , , , publications

The oxygen-sensing pathway contributes largely to the development of tumors. One of the central players in this pathway is prolyl hydroxylase (EglN1, 2 and 3). Our lab currently studies hypoxia signaling, prolyl hydroxylase and cancer, specifically breast and renal cell carcinoma. One project focuses on using proteomic and genomic approaches to screen for novel prolyl hydroxylase substrates that play important roles in cancer. The other project involves integrating CHIP-seq strategy with gene expression profiling in order to identify EglN2 prolyl hydroxylase and hypoxia inducible factor (HIF) targets in the malignant diseases. The ultimate goal is to understand mechanistically how oxygen-sensing pathways contribute to cancer progression, which will facilitate our design of efficient treatment strategies to specifically target cancer.

Zhang, Yanping email , , , , , publications

We employ modern technologies – genomics, proteomics, mouse models, multi-color digital imaging, etc. to study cancer mechanisms. We have made major contributions to our understanding of the tumor suppressor ARF and p53 and the oncoprotein Mdm2.