Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Harry, G. Jean
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Developmental Biology, Neurobiology, Pharmacology, Toxicology

The Neurotoxicology Group examines the role of microglia interactions with neurons and the associated immune-mediated responses in brain development and aging as they relate to the initiation of brain damage, the progression of cell death, and subsequent repair/regenerative capabilities.  We have an interest in the neuroimmune response with regards to neurodegenerative diseases such as, Alzheimer’s disease.

Hazari, Mehdi S
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cardiovascular Biology, Neurobiology, Physiology, Toxicology

Research in my laboratory focuses on the effects of air pollution and other environmental pollutants on the cardiovascular and respiratory systems. We use both traditional as well as novel physiological approaches (radiotelemetry, HF echocardiography, physiological challenge testing) to determine not only the short-term effects of exposure, but also the long-term consequences on health, particularly in the development of chronic diseases (e.g. heart disease). Rodent models are used to study the effects of real-world air pollution concentrations on the central and local neural controls of the cardiovascular and respiratory systems that render a host susceptible to adverse health events. Newer exciting research is focused on public health aspects such as nutrition (e.g. vitamin deficiencies) and non-environmental stressors (e.g. noise, climate change, social disruption) as modifiers of air pollution health effects. These studies examine the epigenetic changes that occur in early life or during development that result in physiological effects and future susceptibility.

Jaspers, Ilona
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology, Toxicology

RESEARCH INTEREST
Immunology, Pathogenesis & Infection, Toxicology, Translational Medicine, Virology

Research in my lab focuses on the mechanisms by which exposure to air pollutants alters respiratory immune responses and modifies susceptibility to and the severity of respiratory virus infections. Specifically, we are examining the effects of air pollutants such as ozone, woodsmoke and tobacco product exposures on host defense responses and influenza virus infections, using several in vitro models of the respiratory epithelium. In collaboration with physician scientists, we are also translating these studies into humans in vivo.

Kelada, Samir
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Genetics & Molecular Biology, Toxicology

RESEARCH INTEREST
Genetics, Genomics, Systems Biology, Toxicology

While both genes and environment are thought to influence human health, most investigations of complex disease only examine one of these risk factors in isolation.  Accounting for both types of risk factors and their complex interactions allows for a more holistic view of complex disease causation.  The Kelada lab is focused on the identification and characterization of these gene-environment interactions in airway diseases, particularly asthma, a disorder of major public health importance.   /  / Additionally, to gain insight into how the airway responds to relevant exposures (e.g., allergens or pathogens), we study gene expression in the lung (particularly airway epithelia). Our goal is identify the genetic determinants of gene expression by measuring gene expression across many individuals (genotypes). / This “systems genetics” approach allows us to identify master regulators of gene expression that may underlie disease susceptibility or represent novel therapeutic targets. /

Kodavanti, Urmila P
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Cardiovascular Biology, Cell Signaling, Genomics, Molecular Biology, Toxicology

Our research focuses on understanding mechanisms of cardiovascular and metabolic health effects of inhaled air pollutants. Specific emphasis is given to susceptibility variations due to underlying cardiovascular disease, obesity, and diabetes. The roles of genetic versus physiological factors are examined. We use molecular and high throughput genomics, and proteomics techniques to establish a link with disease phenotype and physiological alterations. State-of-the-art EPA inhalation facilities are used for air pollution exposures in animal models with or without genetic predisposition. The role of environment in disease burden is the focus.

LeCluyse, Edward L
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Biochemistry, Cell Signaling, Chemical Biology, Structural Biology, Toxicology

Dr. Edward (Ed) LeCluyse is currently a Senior Research Investigator in the Institute for Chemical Safety Sciences at The Hamner Institutes of Health Sciences.  Dr. LeCluyse leads a program initiative to identify and develop novel in vitro hepatic model systems to examine cellular responses to drugs and environmental chemicals that target known toxicity pathways. The focus of his research efforts has been to create more organotypic, physiologically-relevant in vitro models that integrate the architectural, cellular and hemodynamic complexities of the liver in vivo.

MacDonald, Jeffrey
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Biomaterials, Biophysics, Systems Biology, Toxicology

Dr. Macdonald is the Founder and Scientific Director of the new Metabolomic Facility and Co-Scientific Director of the joint UNC/NCSU/NOAA Marine MRI facility at Pivers Island near Beaufort NC. Dr. Macdonald’s research goal is to combine metabolomics and tissue engineering and apply these tools to quantitative biosystem analysis.

Madden, Michael C.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Physiology, Toxicology, Translational Medicine

Exposure to ambient air particulate matter  has been associated with increased human deaths and cardiopulmonary morbidity, such as lung infections and increased asthma symptoms.  I am investigating some types of PM and associated gases  that may be associated with those health effects so  to better regulate or manage the sources of the airborne particles which are identified as playing a role in the adverse health outcomes. I am currently focusing on the effects of diesel exhaust using a variety of approaches ranging from exposing cultured human lung and vascular cells to the exhaust, to studying responses of humans exposed out in traffic.  I am currently designing and implementing testing strategies to assess the toxicity of the future types of vehicular emissions. Additionally some of my research effort attempts to identify what populations are more sensitive to the effects of air pollutants, and the genetic, diet, and environmental reasons behind the increased sensitivity.

Nylander-French, Leena
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Toxicology

RESEARCH INTEREST
Computational Biology, Genetics, Toxicology

My research focuses on understanding the relationship between dermal and inhalation exposure and the effect of individual genetic differences on the function of enzymes that detoxify hazardous agents and that affect the development of disease. My research group has pioneered approaches to quantitatively measure skin and inhalation exposures to toxicants; additionally, my group has developed sophisticated exposure modeling tools using mathematical and statistical principles in an effort to standardize and improve exposure and risk assessment.

Peden, David B.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology, Toxicology

RESEARCH INTEREST
Toxicology

Translational and clinical research in environmental lung disease.