Research Interest: Structural Biology
Name | PhD Program | Research Interest | Publications |
---|---|---|
Berlow, Rebecca WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our lab is interested in the molecular mechanisms of adaptive stress responses. These responses to environmental or metabolic stress are essential for survival but frequently dysregulated in disease. We use an integrated approach combining biophysical, structural, and biochemical methods to investigate the roles of intrinsically disordered proteins and dynamic enzymes that orchestrate these critical stress responses, with the ultimate goal of developing new approaches for modulating the functions of dynamic molecules. |
Brunk, Elizabeth WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
A growing body of work in the biomedical sciences generates and analyzes omics data; our lab’s work contributes to these efforts by focusing on the integration of different omics data types to bring mechanistic insights to the multi-scale nature of cellular processes. The focus of our research is on developing systems genomics approaches to study the impact of genomic variation on genome function. We have used this focus to study genetic and molecular variation in both natural and engineered cellular systems and approach these topics through the lens of computational biology, machine learning and advanced omics data integration. More specifically, we create methods to reveal functional relationships across genomics, transcriptomics, ribosome profiling, proteomics, structural genomics, metabolomics and phenotype variability data. Our integrative omics methods improve understanding of how cells achieve regulation at multiple scales of complexity and link to genetic and molecular variants that influence these processes. Ultimately, the goal of our research is advancing the analysis of high-throughput omics technologies to empower patient care and clinical trial selections. To this end, we are developing integrative methods to improve mutation panels by selecting more informative genetic and molecular biomarkers that match disease relevance. |
Drewry, David H WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The Drewry lab is focused on designing, synthesizing, evaluating, and sharing small molecule chemical probes for protein kinases. These tools are used to build a deeper understanding of disease pathways and facilitate identification of important targets for drug discovery. Through wide ranging partnerships with academic and industrial groups, the Drewry lab is building a Kinase Chemogenomic Set (KCGS) that is available to the community for screening. |
Baker, Rick WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our lab is interested in the mechanisms of membrane trafficking in eukaryotic cells. Using a combination of biochemistry, in vitro reconstitution, and structural biology, we seek to understand how protein complexes assemble to bend and perturb membranes during vesicle budding (endocytosis) and vesicle fusion (exocytosis). Our group also specializes in cryo-electron microscopy (cryo-EM) and we use semi-native substrates (nanodiscs, liposomes) to visualize complexes engaged with the membrane. |
Brown, Nicholas WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our research group uses several biochemical and structural techniques (e.g. enzyme assays, X-ray crystallography, and cryo-EM) to understand how molecular machines drive the cell cycle. Dysregulation of these enzymes results in numerous cancer types. |
Williams, David C. Jr. WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The overall objective of our research is to understand the connection between structure of protein-DNA complexes, protein dynamics and function. We currently focus on the methyl-cytosine binding domain (MBD) family of DNA binding proteins. The MBD proteins selectively recognize methylated CpG dinucleotides and regulate gene expression critical for both normal development and carcinogenesis. We use a combination of NMR spectroscopy and biophysical analyses to study protein-DNA and protein-protein complexes involving the MBD proteins. Building on these studies, we are developing inhibitors of complex formation as potential molecular therapeutics for b-hemoglobinopathies and cancer. |
Liu, Jian WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The overall goal of our research is to develop an enzyme-based approach to synthesize heparin- and heparan sulfate-like therapeutics. The lab is currently focusing on improving the anticoagulant efficacy of heparin drug as well as synthesizing heparin-like compounds that inhibit herpes simplex virus infections. We are also interested in using protein and metabolic engineering approaches for preparing polysaccharides with unique biological functions. |
McGinty, Robert WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The McGinty lab uses structural biology, protein chemistry, biochemistry, and proteomics to study epigenetic signaling through chromatin in health and disease. Chromatin displays an extraordinary diversity of chemical modifications that choreograph gene expression, DNA replication, and DNA repair – misregeulation of which leads to human diseases, especially cancer. We prepare designer chromatin containing specific combinations of histone post-translational modifications. When paired with X-ray crystallography and cryo-electron microscopy, this allows us to interrogate mechanisms underlying epigenetic signaling at atomic resolution. |
Griffith, Jack WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
We are interested in basic DNA-protein interactions as related to – DNA replication, DNA repair and telomere function. We utilize a combination of state of the art molecular and biochemical methods together with high resolution electron microscopes. |
Erie, Dorothy WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The research in my lab is divided into two main areas – 1) Atomic force microscopy and fluorescence studies of protein-protein and protein-nucleic acid interactions, and 2) Mechanistic studies of transcription elongation. My research spans the biochemical, biophysical, and analytical regimes. |