Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Conlon, Frank
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Genetics & Molecular Biology

RESEARCH INTEREST
Biochemistry, Cardiovascular Biology, Developmental Biology, Genetics, Genomics, Molecular Biology, Stem Cells, Systems Biology

Males and females differ in their prelevance, treatment, and survival to a diverse set of human disease states. This is exemplified cardiovascular disease, a disease that takes more lives than all forms of cancer combined. In cardiac disease, women almost uniformly fare far worse than men: as of 2007 one woman dying for cardiovascular disease in the US every minute. Our lab focuses on sex disparities in development and disease. For these studies, we use a highly integrated approach that incorporates developmental, genetic, proteomic, biochemical and molecular-based studies in mouse and stem cells. Recent advances by our past students (presently at Harvard, John Hopkins and NIH) include studies that define the cellular and molecular events that lead to cardiac septation, those that explore cardiac interaction networks as determinants of transcriptional specificity, the mechanism and function of cardiac transcriptional repression networks, and the regulatory networks of cardiac sexual dimorphism. Our lab has opening for rotation and PhDs to study these rapidly emerging topics.

Randell, Scott
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Toxicology

RESEARCH INTEREST
Cancer Biology, Cell Biology, Drug Discovery, Immunology, Molecular Medicine, Pathogenesis & Infection, Physiology, Stem Cells, Toxicology, Translational Medicine

My laboratory research is focused on basic cell biology questions as they apply to clinical lung disease problems. Our main work recently has been contributing to the Cystic Fibrosis (CF) Foundtation Stem Cell Consortium, with a focus on developing cell and gene editing therapies for CF. I contribute to UNC team science efforts on cystic fibrosis, aerodigestive cancers, emerging infectious diseases and inhalation toxicology hazards. I direct a highly respected tissue procurement and cell culture Core providing primary human lung cells and other resources locally, nationally and internationally. I co-direct the Respiratory Block in the UNC Translational Educational Curriculum for medical students and also teach in several graduate level courses.

Calabrese, J. Mauro
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Genetics & Molecular Biology, Pharmacology

RESEARCH INTEREST
Bioinformatics, Cell Biology, Computational Biology, Genetics, Genomics, Molecular Biology, Pharmacology, Stem Cells

Our lab is trying to understand the mechanisms by which long noncoding RNAs orchestrate the epigenetic control of gene expression. Relevant examples of this type of gene regulation occur in the case of X-chromosome inactivation and autosomal imprinting. We specialize in genomics, but rely a combination of techniques —  including genetics, proteomics, and molecular, cell and computational biology — to study these processes in both mouse and human stem and somatic cell systems.

Bressan, Michael
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Biophysics, Cardiovascular Biology, Cell Biology, Cell Signaling, Developmental Biology, Genetics, Microscopy, Molecular Biology, Molecular Medicine, Physiology, Stem Cells

How do networks of cells synchronize behaviors across differing spatial and temporal scales? This fundamental aspect of cellular dynamics is broadly relevant to understanding many biological systems in which the coherence of electrical or chemical signals is required for multicellular patterning or organ function. Our group’s primary research interests are related to understanding the cellular and microenvironmental conditions that are required to support the biorhythmic behavior of the system of cells that natively control heart rate, cardiac pacemaker cells. We utilize a variety of techniques including computational modeling, next generation sequencing, in vivo genetic manipulation, super-resolution imaging, and direct physiological recording to investigate the developmental processes that assemble the hearts pacemaking complex. The ultimate goals of these studies is to determine how the pacemaker cell lineage is patterned in the embryo, build strategies towards fabricating this cell type for therapeutic purposes, and identify vulnerabilities that may lead to pacemaker cell pathologies in humans.