Research Interest: Stem Cells
Name | PhD Program | Research Interest | Publications |
---|---|---|
De Paris, Kristina WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our research focuses on the immunological aspects of pathogen-host interactions. The lab is actively involved in HIV pathogenesis and vaccine studies using the nonhuman primate model of SIV infection. We are particularly interested in pediatric HIV transmission by breast-feeding and the early, local host immune response. A main research focus is on developmental differences in host immune responses between infants and adults and how they alter pathogenesis. The effect of co-infections (e.g. malaria and Tb) on HIV pathogenesis and transmission is a second research focus. The lab is developing a nonhuman primate model of SIV-Plasmodium fragile co-infection to study HIV-P. falciparum infection in humans. |
Conlon, Frank WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Males and females differ in their prelevance, treatment, and survival to a diverse set of human disease states. This is exemplified cardiovascular disease, a disease that takes more lives than all forms of cancer combined. In cardiac disease, women almost uniformly fare far worse than men: as of 2007 one woman dying for cardiovascular disease in the US every minute. Our lab focuses on sex disparities in development and disease. For these studies, we use a highly integrated approach that incorporates developmental, genetic, proteomic, biochemical and molecular-based studies in mouse and stem cells. Recent advances by our past students (presently at Harvard, John Hopkins and NIH) include studies that define the cellular and molecular events that lead to cardiac septation, those that explore cardiac interaction networks as determinants of transcriptional specificity, the mechanism and function of cardiac transcriptional repression networks, and the regulatory networks of cardiac sexual dimorphism. Our lab has opening for rotation and PhDs to study these rapidly emerging topics. |
Randell, Scott WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My laboratory research is focused on basic cell biology questions as they apply to clinical lung disease problems. Our main work recently has been contributing to the Cystic Fibrosis (CF) Foundtation Stem Cell Consortium, with a focus on developing cell and gene editing therapies for CF. I contribute to UNC team science efforts on cystic fibrosis, aerodigestive cancers, emerging infectious diseases and inhalation toxicology hazards. I direct a highly respected tissue procurement and cell culture Core providing primary human lung cells and other resources locally, nationally and internationally. I co-direct the Respiratory Block in the UNC Translational Educational Curriculum for medical students and also teach in several graduate level courses. |
Calabrese, J. Mauro WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our lab is trying to understand the mechanisms by which long noncoding RNAs orchestrate the epigenetic control of gene expression. Relevant examples of this type of gene regulation occur in the case of X-chromosome inactivation and autosomal imprinting. We specialize in genomics, but rely a combination of techniques — including genetics, proteomics, and molecular, cell and computational biology — to study these processes in both mouse and human stem and somatic cell systems. |
Bressan, Michael WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
How do networks of cells synchronize behaviors across differing spatial and temporal scales? This fundamental aspect of cellular dynamics is broadly relevant to understanding many biological systems in which the coherence of electrical or chemical signals is required for multicellular patterning or organ function. Our group’s primary research interests are related to understanding the cellular and microenvironmental conditions that are required to support the biorhythmic behavior of the system of cells that natively control heart rate, cardiac pacemaker cells. We utilize a variety of techniques including computational modeling, next generation sequencing, in vivo genetic manipulation, super-resolution imaging, and direct physiological recording to investigate the developmental processes that assemble the hearts pacemaking complex. The ultimate goals of these studies is to determine how the pacemaker cell lineage is patterned in the embryo, build strategies towards fabricating this cell type for therapeutic purposes, and identify vulnerabilities that may lead to pacemaker cell pathologies in humans. |