Research Interest: Pathology
Name | PhD Program | Research Interest | Publications |
---|---|---|
Sartor, R. Balfour WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our long term goals are to better define mechanisms of chronic intestinal inflammation and to identify areas for therapeutic intervention. Research in our laboratories is in the following four general areas: 1) Induction and perpetuation of chronic intestinal and extraintestinal inflammation by resident intestinal bacteria and their cell wall polymers, 2) Mechanisms of genetically determined host susceptibility to bacterial product,. 3) Regulation of immunosuppressive molecules in intestinal epithelial cells and 4) Performing clinical trials of novel therapeutic agents in inflammatory bowel disease patients. |
Serody, Jonathan WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The Serody laboratory focuses on tumor and transplant immunology studies using both animal models and translational work with clinical samples. We have performed pioneering work in both of these areas. Our laboratory was the first to describe a role for migratory proteins in the biology of acute GVHD. We were the first group to use eGFP transgenic mice generated in part by our group to track the migration of donor cells after transplant. This work showed a critical role for lymphoid tissue in the activation of donor T cells. Most recently we have been the first group to demonstrate the absence of ILC2 cells in the GI tract after all types of transplant and we have generated novel studies into the ILC2 niche in the bone marrow. For our tumor work we were one of the first groups to use genomic evaluations of the tumor microenvironment to characterize the immune response in cancer models. We were the first group to demonstrate how to enhance checkpoint inhibitor therapy in triple negative breast cancer models and have been one of the leading groups in performing genomic evaluations using TCGA data. Finally, we are one of the leading groups in the world characterizing the role of B cells in the anti-tumor immune response. |
Taylor, Joan M. WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The goal of our research is to identify signaling mechanisms that contribute to normal and pathophysiological cell growth in the cardiovascular system. We study cardiac and vascular development as well as heart failure and atherosclerosis. |
Tisch, Roland WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Projects involve the study of cellular and molecular events involved in autoimmunity, and development and application of genetic vaccines to prevent and treat autoimmunity and cancer. |
Wolberg, Alisa WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
We investigate mechanisms in blood coagulation and diseases that intersect with abnormal blood biomarkers and function, including cardiovascular disease (heart attack, stroke, deep vein thrombosis, pulmonary embolism), bleeding (hemophilia), inflammation, obesity, and cancer. We also investigate established drugs and new drugs in preclinical development to understand their role in reducing and preventing disease. Our studies use interdisciplinary techniques, including in vitro, ex vivo, and in vivo mouse models and samples from humans in translational studies that span clinic to bench. Our lab emphasizes a culture of diversity, responsibility, independence and collaboration, and shared excitement for scientific discovery. We are located in the UNC Blood Research Center in the newly-renovated Mary Ellen Jones building. |
Pecot, Chad Victor WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Pecot Lab: Therapeutic RNAi to Teach Cancer how to “Heal” and Block Metastatic Biology Synopsis: The Pecot lab is looking for eager, self-motivated students to join us in tackling the biggest problem in oncology, metastases. An estimated 90% of cancer patients die because of metastases. However, the fundamental underpinnings of what enables metastases to occur are poorly understood. The Pecot lab takes a 3-pronged approach to tackling this problem: 1) By studying the tumor microenvironment (TME), several projects are studying how cancers can be taught to “heal” themselves, 2) By studying how cancers manipulate non-coding RNAs (micro-RNAs, circle RNAs, snoRNAs, etc) to promote their metastatic spread, and 3) We are investigating several ways to develop and implement therapeutic RNA interference (RNAi) to tackle cancer-relevant pathways that are traditionally regarded as “undruggable”. Students joining the lab will be immersed in the development of novel metastatic models, modeling and studying the TME both in vitro and in vivo, using bioinformatic approaches to uncover mechanistic “roots”, and implementation of therapeutic approaches |
Troester, Melissa WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Dr. Troester’s research focuses on stromal-epithelial interactions, genomics of normal breast tissue, breast cancer microenvironment, and molecular pathology of breast cancer progression. She is a Co-Investigator on the Carolina Breast Cancer Study (CBCS), a resource including breast tumors from thousands of African American women, and she is PI of the Normal Breast Study (NBS), a unique biospecimen resource of normal tissue from women undergoing breast surgery at UNC Hospitals. Dr. Troester has extensive experience in integrating multiple high dimensional data types. She is chair of the Normal Breast Committee for the Cancer Genome Atlas Project where she is leading coordination of histology, copy number, mutation, methylation, mRNA and microRNA expression data. She has more than a decade of experience working with genomic data and molecular biology of breast cancer progression and has published many papers in the area of breast cancer subtypes, breast microenvironment, and stromal-epithelial interactions. She has trained four postdocs, 12 predoctoral students and several undergraduates. |
Snider, Natasha WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our lab has two areas of interest: the molecular basis of liver diseases and the biochemical mechanisms of disorders linked to intermediate filament gene mutations. We use biochemical, cell-based and in vivo approaches to identify potential disease targets and to understand their function and regulation. The major goal of our work is to promote the discovery of pharmacological agents that can slow or halt the progression of these diseases. |