Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Clemmons, David R.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics

RESEARCH INTEREST
Cell Biology, Genetics, Molecular Medicine, Pathology, Physiology, Structural Biology, Systems Biology

Cross-talk between insulin like growth factor -1 and cell adhesion receptors in the regulation of cardiovascular diseases and complications associated with diabetes.

Chen, Xian
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics

RESEARCH INTEREST
Cancer Biology, Computational Biology, Immunology, Pathology, Systems Biology

Developing and applying novel mass spectrometry (MS)-based proteomics methodologies for high throughput identification, quantification, and characterization of the pathologically relevant changes in protein expression, post-translational modifications (PTMs), and protein-protein interactions. Focuses in the lab include: 1) technology development for comprehensive and quantitative proteomic analysis, 2) investigation of systems regulation in toll-like receptor-mediated pathogenesis and 3) proteomic-based mechanistic investigation of stress-induced cellular responses/effects in cancer pathogenesis.

Cairns, Bruce A.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology, Toxicology

RESEARCH INTEREST
Developmental Biology, Immunology, Molecular Biology, Pathology, Physiology

The immune system of severely burned patients becomes extremely suppressed after injury. An overwhelming number of patients die from wound infection and sepsis. However, we are unable to graft these patients with skin from other donors as their immune system is still able to reject the graft efficiently. Our inability to cover the wound site leaves the patients further open to bacterial and fungal infections. Our laboratory investigates the translational immune mechanisms for these devastating consequences of burn within mouse models and burn patients. Focuses in the lab include 1) investigation of innate molecule control of both the innate and adaptive immune systems after burn injury, 2) Role of innate signaling to Damage Associated Molecular Patterns in Immune Dysfunction after burn / inhalational injury,focusing on mTOR-mediated Immunomodulation 3) Using NRF2/KEAP1-Targeted Therapy to Prevent Pneumonitis and Immune Dysfunction After Radiation or Combined Burn-Radiation Injury and 4) Investigating sex-specific disparities in Immune Dysfunction after trauma / transplantation. ​

Homeister, Jonathon W.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Cardiovascular Biology, Cell Biology, Immunology, Pathology, Physiology

Our research focuses on understanding the molecular and cellular mechanisms of leukocyte (white blood cell) trafficking and homing in vascular inflammation and immune responses. We are interested in the glycobiology of the Selectin leukocyte adhesion molecules and their ligands, and understanding the roles for these glycoproteins in the pathogenesis of inflammatory/immune cardiovascular diseases such as atherosclerosis and vasculitis. We are also interested in the mechanisms whereby the selectins and their ligands link the inflammatory response and coagulation cascade and thereby modulate thrombosis and hemostasis.

Jennette, Charles J.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Immunology, Pathology, Translational Medicine

My research interests and diagnostic responsibilities center around nephropathology and immunopathology. My laboratory carries out basic, translational and clinicopathologic research on kidney diseases. I am most interested in pathogenic mechanisms and pathologic manifestations of glomerular diseases and vasculitis. A major current research focus is on elucidating the pathogenesis of vascular inflammation caused by anti-neutrophil cytoplasmic autoantibodies (ANCA).

Kakoki, Masao
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Genetics, Pathology

My research aims at prevention and treatment of cardiovascular diseases and focuses on the identification of genes that confer susceptibility or resistance to the diseases with the use of genetically engineered mice. In collaboration with Dr.Oliver Smithies, I very recently developed a new method for altering gene expression by modifying 3’ untranslated regions in mice which enables fine-tuned modification of gene expression. I am now analyzing the phenotypes of several mouse models generated with this method.

Kesimer, Mehmet
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Biochemistry, Cell Biology, Molecular Biology, Pathology, Translational Medicine

One of the main focuses of my work is the characterization of the large mucin gene products (Mr 2-3 million) and the complexes they make (Mr 10-100 million) essential for the formation of the mucus gels vital for epithelial protection and function. My current work is focused around the human lung, where there are many hypersecretory human diseases, including asthma, cystic fibrosis, and chronic bronchitis, in which these glycoconjugates are centrally implicated. Basic understanding of the qualitative and quantitative changes of mucin macromolecules in lung health and diseases is our main task.

Mack, Christopher P.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Pathobiology & Translational Science

RESEARCH INTEREST
Cardiovascular Biology, Cell Signaling, Developmental Biology, Molecular Biology, Pathology

My research goals are to identify the mechanisms by which environmental factors regulate smooth muscle cell phenotype and to define the transcriptional pathways that regulate SMC-specific gene expression.

Mackman, Nigel
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Cancer Biology, Cardiovascular Biology, Cell Signaling, Pathology, Translational Medicine

The major focus of Mackman lab is the procoagulant protein tissue factor. This is the primary cellular initiator of blood coagulation. We study its role in hemostasis, thrombosis, inflammation, ischemia-reperfusion injury and tumor growth.  We have generated a number of mouse models expressing different levels of both mouse and human tissue factor. These mice have been used to provide new insights into the role of tissue factor in hemostasis and thrombosis. In 2007, we developed a new assay to measure levels of microparticle tissue factor in plasma. We found that elevated levels of microparticle tissue factor are associated with venous thromboembolism in cancer patients.

Nichols, Timothy C.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Molecular Biology, Pathology

My research interests include the role of von Willebrand factor in thrombosis and atherosclerosis. Our current lab work focuses on the molecular biology of porcine von Willebrand factor.