Skip to main content
NameEmailPhD ProgramResearch InterestPublications
DeSimone, Joseph M.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Chemistry, Pharmacology

RESEARCH INTEREST
Biomaterials, Cancer Biology, Nanomedicine, Pharmacology

The direct fabrication and harvesting of monodisperse, shape-specific nano-biomaterials are presently being designed to reach new understandings and therapies in cancer prevention, diagnosis and treatment.  Students interested in a rotation in the DeSimone group should not contact Dr. DeSimone directly.  Instead please contact Chris Luft at jluft@email.unc.edu.

Batrakova, Elena
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmaceutical Sciences

RESEARCH INTEREST
Drug Delivery, Nanomedicine, Neurobiology

What if you can target and deliver a drug directly to the side of disease in the body? It is possible, when you use smart living creatures pro-inflammatory response cells, such as monocytes, T-lymphocytes or dendritic cells. You can load these cells with the drug and inject these carriers into the blood stream. They will migrate to the inflammation site (for example, across the blood brain barrier) and release the drug. Thus, you can reduce the inflammation and protect the cells (for example, neurons) in patients with Parkinson’s and Alzheimer diseases.

Bahnson, Edward Moreira
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Pathobiology & Translational Science, Pharmacology

RESEARCH INTEREST
Cardiovascular Biology, Cell Biology, Drug Delivery, Nanomedicine, Translational Medicine

We are interested in studying diabetic vasculopathies. Patients with type 2 diabetes mellitus or metabolic syndrome have aggressive forms of vascular disease, possessing a greater likelihood of end-organ ischemia, as well as increased morbidity and mortality following vascular interventions. Our long term research aims to change the way we treat arterial disease in diabetes by:

  • Understanding why arterial disease is more aggressive in diabetic patients, with a focus in redox signaling in the vasculature.
  • Developing targeted systems using nanotechnology to locally deliver therapeutics to the diseased arteries.
Kabanov, Alexander (Sasha)
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmaceutical Sciences

RESEARCH INTEREST
Drug Delivery, Nanomedicine, Translational Medicine

In our lab we develop novel polymer based drug delivery systems and nanomedicines incorporating small molecules, DNA and polyptides to treat cancer, neurodegenerative and other CNS-related disorders.

Lai, Samuel
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology, Oral & Craniofacial Biomedicine, Pharmaceutical Sciences

RESEARCH INTEREST
Biomaterials, Biophysics, Drug Delivery, Immunology, Nanomedicine, Pathogenesis & Infection

Our dynamic group are broadly involve in three topics: (i) prevention of infectious diseases by harnessing interactions between secreted antibodies and mucus, (ii) immune response to biomaterials, and (iii) targeted delivery of nanomedicine.  Our group was the first to discover that secreted antibodies can interact with mucins to trap pathogens in mucus.  We are now harnessing this approach to engineer improved passive and active immuniation (i.e. vaccines) at mucosal surfaces, as well as understand their interplay with the mucosal microbiome.  We are also studying the adaptive immune response to polymers, including anti-PEG antibodies, and how it might impact the efficacy of PEGylated therapeutics.  Lastly, we are engineering fusion proteins that can guide targeted delivery of nanomedicine to heterogenous tumors and enable personalized medicine.

Pecot, Chad Victor
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Genetics & Molecular Biology, Pathobiology & Translational Science

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Nanomedicine, Pathology, Translational Medicine

Pecot Lab: Therapeutic RNAi to Teach Cancer how to “Heal” and Block Metastatic Biology

Synopsis: The Pecot lab is looking for eager, self-motivated students to join us in tackling the biggest problem in oncology, metastases. An estimated 90% of cancer patients die because of metastases. However, the fundamental underpinnings of what enables metastases to occur are poorly understood. The Pecot lab takes a 3-pronged approach to tackling this problem: 1) By studying the tumor microenvironment (TME), several projects are studying how cancers can be taught to “heal” themselves, 2) By studying how cancers manipulate non-coding RNAs (micro-RNAs, circle RNAs, snoRNAs, etc) to promote their metastatic spread, and 3) We are investigating several ways to develop and implement therapeutic RNA interference (RNAi) to tackle cancer-relevant pathways that are traditionally regarded as “undruggable”. Students joining the lab will be immersed in the development of novel metastatic models, modeling and studying the TME both in vitro and in vivo, using bioinformatic approaches to uncover mechanistic “roots”, and implementation of therapeutic approaches

Troester, Melissa
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Bioinformatics, Genomics, Nanomedicine, Pathology, Translational Medicine

Dr. Troester’s research focuses on stromal-epithelial interactions, genomics of normal breast tissue, breast cancer microenvironment, and molecular pathology of breast cancer progression. She is a Co-Investigator on the Carolina Breast Cancer Study (CBCS), a resource including breast tumors from thousands of African American women, and she is PI of the Normal Breast Study (NBS), a unique biospecimen resource of normal tissue from women undergoing breast surgery at UNC Hospitals. Dr. Troester has extensive experience in integrating multiple high dimensional data types. She is chair of the Normal Breast Committee for the Cancer Genome Atlas Project where she is leading coordination of histology, copy number, mutation, methylation, mRNA and microRNA expression data. She has more than a decade of experience working with genomic data and molecular biology of breast cancer progression and has published many papers in the area of breast cancer subtypes, breast microenvironment, and stromal-epithelial interactions. She has trained four postdocs, 12 predoctoral students and several undergraduates.

Ainslie, Kristy M.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology, Pharmaceutical Sciences

RESEARCH INTEREST
Biomaterials, Drug Delivery, Immunology, Nanomedicine

We have several areas of research interest broadly in the area of immunomodulation using micro/nanoparticles and other carrier systems.  This can include development of traditional vaccines, therapeutic autoimmune vaccines and classic drug delivery platforms targeted to bacterial, viral or parasitic host cells.  To this end, we also seek to develop new materials and platforms optimal for use in modulating immune responses as well as developing scalable production of micro/nanoparticles.

Hirsch, Matthew
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Drug Delivery, Genetics, Molecular Biology, Nanomedicine, Translational Medicine

Our lab works with adeno-associated viral vectors for both the characterization of vector and host responses upon transduction and as therapeutic agents for the treatment of genetic diseases.  In particular, we tend to focus on the 145 nucleotide viral inverted terminal repeats of the transgenic genome and their multiple functions including the replication initiation, inherent promoter activity, and stimulation of intra/inter molecular DNA repair pathways.  The modification of the AAV ITRs by synthetic sequences imparts unique functions/activities rendering these synthetic vectors perhaps better suited for therapeutic applications.

Han, Zongchao
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology

RESEARCH INTEREST
Cell Biology, Drug Delivery, Genomics, Molecular Biology, Nanomedicine

My research focus centers on retinal gene/drug therapy using nanotechnologies. My laboratory is interested in developing gene therapies for inherited blinding diseases and eye tumors. We are particularly interested in understanding the gene expression patterns that are regulated by the cis-regulatory elements. We utilize compacted DNA nanoparticles which have the ability to transfer large genetic messages to overcome various technical challenges and to appreciate the translational potential of this technology. This multidimensional technology also facilitated targeted drug delivery. Currently, we are working on the design and development of several specific nano formulations with targeting, bioimaging and controlled release specificities.