Research Interest: Molecular Medicine
Name | PhD Program | Research Interest | Publications |
---|---|---|
Isaeva, Natalia WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The incidence of human papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (OPSCC) has significantly elevated in the last years and continues to increase; however, despite the continuous rise of HPV-related OPSCC, molecular mechanisms of how HPV promotes OPSCC are not well defined. Our ongoing research projects focus on understanding the role of HPV in the development, maintenance, and progression of head and neck squamous cell carcinoma (HNSCC). These discoveries are leveraged to identify and test novel therapeutic strategies that exploit susceptibilities of HPV-associated HNSCC. |
Zannas, Anthony WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Psychosocial stress is abundant in modern societies and, when chronic or excessive, can have detrimental effects on our bodies. But how exactly does stress “get under the skin?” Our lab examines how stress shapes the human epigenome as age advances. Epigenetic changes are a set of chemical modifications that regulate gene transcription without altering the genetic code itself. We examine how lasting epigenetic patterns result from stressful experiences, accrue throughout life, and can in turn shape health or disease trajectories. We address these questions through a translational approach that combines large-scale analyses in human cohorts with mechanistic work in cellular models. We use both bioinformatics and wet lab tools. Our passion is to promote creative team work, offer strong mentorship, and foster scientific growth. |
Diekman, Brian WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
A major focus of the Diekman lab is to develop new strategies to limit age-related osteoarthritis (OA). The lab uses genetically-engineered mouse models to investigate the development of cellular senescence in joint tissues with physiologic aging. One goal of this work is to determine whether “senolytic” compounds that induce selective apoptosis in senescent cells will mitigate OA development. Our group has also developed genome-editing protocols for primary human chondrocytes to produce single-cell derived colonies with homozygous knockout of target genes. We are using engineered tissues from these cells to dissect the mechanism of genes implicated in OA development by genome-wide association studies, as well as coupling these technologies to high throughput screening approaches for OA drug discovery. |
Li, Feng WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our research is focused on the genetics and molecular pathology of complex multi-factorial conditions in humans –hypertension especially pregnancy related hypertension such as preeclampsia. We have identified that endothelin-1 plays a causative role in developing preeclampsia. Now we are focusing on elucidating the mechanisms underlying this phenomenon, particularly on how the endothelin system affects the embryonic implantation on the early stage of pregnancy. |
Erie, Dorothy WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The research in my lab is divided into two main areas – 1) Atomic force microscopy and fluorescence studies of protein-protein and protein-nucleic acid interactions, and 2) Mechanistic studies of transcription elongation. My research spans the biochemical, biophysical, and analytical regimes. |
Doerschuk, Claire M. WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
We study host defense mechanisms in the lungs, particularly the inflammatory and innate immune processes important in the pathogenesis and course of bacterial pneumonia, acute lung injury/acute respiratory distress syndrome, and cigarette smoke-associated lung disease. Basic and translational studies address mechanisms of host defense, including recruitment and function of leukocytes, vascular permeability leading to edema, bacterial clearance and resolution. Cell signaling pathways initiated by binding of leukocyte-endothelial cell adhesion molecules and molecular mechanisms underlying the functions of neutrophils are two particular areas. |
Cyr, Douglas M. WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The Cyr laboratory studies cellular mechanisms for cystic fibrosis and prion disease. We seek to determine how protein misfolding leads to the lung pathology associated with Cystic Fibrosis and the neurodegeneration associated with prion disease. |
Cox, Adrienne WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our lab is interested in molecular mechanisms of oncogenesis, specifically as regulated by Ras and Rho family small GTPases. We are particularly interested in understanding how membrane targeting sequences of these proteins mediate both their subcellular localization and their interactions with regulators and effectors. Both Ras and Rho proteins are targeted to membranes by characteristic combinations of basic residues and lipids that may include the fatty acid palmitate as well as farnesyl and geranylgeranyl isoprenoids. The latter are targets for anticancer drugs; we are also investigating their unexpectedly complex mechanism of action. Finally, we are also studying how these small GTPases mediate cellular responses to ionizing radiation – how do cells choose whether to arrest, die or proliferate? |
Clemmons, David R. WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Cross-talk between insulin like growth factor -1 and cell adhesion receptors in the regulation of cardiovascular diseases and complications associated with diabetes. |
Jarstfer, Michael WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The Jarstfer lab uses an interdisciplinary approach to solve biological problems that are germane to human health. Currently we are investigating the structure of the enzyme telomerase, we are developing small-molecules that target the telomere for drug discovery and chemical biology purposes, and we are investigating the signals that communicate the telomere state to the cell in order to control cellular immortality. We are also engaged in a drug/chemical tool discovery project to identify small molecules that control complex social behavior in mammals. Techniques include standard molecular biology and biochemistry of DNA, RNA, and proteins, occasional organic synthesis, and high throughput screening. |