Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Iweala, Onyinye
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Immunology, Pathogenesis & Infection, Translational Medicine

Individuals with alpha-gal syndrome, characterized by delayed anaphylaxis (severe allergic reactions) to mammalian meat, have been reported across the globe, yet we have limited understanding of the mechanisms underlying this condition. My lab explores the role of glycolipids interacting with different cells within our innate and adaptive immune systems in the pathogenesis of this allergy. Our vision is to broaden understanding of glycolipids and their role in hypersensitivity disorders. We also want to understand why tick exposure, which is associated with the development of alpha-gal meat allergy, can promote allergic immune responses and how epigenetic dysregulation may influence allergic immune responses. PhD Program: Pathobiology and Translational Science.

Nguyen, Juliane
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmaceutical Sciences

RESEARCH INTEREST
Biochemistry, Bioinformatics, Biomaterials, Drug Delivery, Immunology, Translational Medicine

The Nguyen lab develops the next generation of effective and safe biotherapeutics for life-threatening diseases such as cancer and myocardial infarction. We engineer novel immunomodulatory carriers based on genetically encoded materials and lipids that home to the site of disease, respond to changes in the microenvironment, and effectively deliver nucleic acids and drugs.

Flick, Matthew

EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Cell Biology, Genetics, Immunology, Metabolism, Pathogenesis & Infection

Our laboratory studies the role of the blood coagulation system in inflammatory, infectious, and malignant disease. Specifically, we are interested in better defining the roles of factors such as prothrombin, fibrinogen and plasminogen in driving disease processes in the contexts of pancreatic ductal adenocarcinoma (PDAC), Staphylococcus aureus infection, and obesity/metabolic syndrome. Current studies suggest that coagulation factors drive mechanisms of disease both dependent and independent of their traditional roles in hemostasis and thrombosis. Our overall goal is to translate this knowledge into novel approaches for treating these common yet deadly diseases.

Vincent, Benjamin
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Microbiology & Immunology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Computational Biology, Genomics, Immunology, Systems Biology, Translational Medicine

The Vincent laboratory focuses on immunogenomics and systems approaches to understanding tumor immunobiology, with the goal of developing clinically relevant insights and new cancer immunotherapies.  Our mission is to make discoveries that help cancer patients live longer and better lives, focusing on research areas where we feel our work will lead to cures. Our core values are scientific integrity, continual growth, communication, resource stewardship, and mutual respect.

Poulton, John S.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cell Biology, Developmental Biology, Genetics, Immunology, Translational Medicine

Many diseases of the kidney remain poorly understood. My research program spans a range of disciplines (e.g., genetics, cell biology, immunology) and experimental approaches (e.g., microscopy, molecular biology, biochemistry, and model organisms—Drosophila and zebrafish) to answer fundamental questions regarding the genetic and cellular basis of kidney function and disease. We are also developing novel assays to study autoimmune diseases of the kidney, with the goal of facilitating patient diagnosis and treatment. By applying modern tools to long-standing problems, we hope to translate our research findings to improved patient outcomes.

Dotti, Gianpettro
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Immunology

The overall focus of the laboratory is to develop immunotherapy strategies to treat human malignancies. Specifically, one area of research is dedicated to the genetic engineering of immune cells to redirect their specificity to tumor-associated antigens. The most effective strategies developed in the laboratory are then translated into phase I clinical studies since we have access to the cellular therapeutic facility at UNC. The second area of research is dedicated to the tumor microenvironment and the development of engineering strategies aimed at countering its immunosuppressive properties.

Tsagaratou, Ageliki
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Genetics & Molecular Biology, Microbiology & Immunology

RESEARCH INTEREST
Cancer Biology, Genetics, Genomics, Immunology, Molecular Biology

We aim to dissect the epigenetic and transcriptional mechanisms that shape T cell lineage specification during development in the thymus and in the periphery upon antigen (microbial, viral) encounter. Aberrant expression of transcription and epigenetic factors can result in inflammation, autoimmunity or cancer. We are using gene deficient mouse models, multiparameter Flow Cytometry, molecular biology assays and next generation sequencing technologies to elucidate the regulatory information in cells of interest (transcriptome, epigenome, transcription factor occupancy).

Savoldo, Barbara
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Immunology, Translational Medicine

My research interests are in the immunology and pathogenesis of Epstein-Barr virus (EBV) associated lymphomas developing in immunosuppressed patients. I have studied the use of EBV specific cytotoxic T-cells (CTLs) for therapy of post-transplant EBV-associated lymphoproliferative disease (PTLD). I am also interested in the preclinical development of cancer immunotherapy approaches for hematological and solid tumors, specifically by using T cells as platform for exploring genetic immune-manipulations to redirect them to tumors by transgenic expression of alpha-betaTCRs or of chimeric antigen/tumor-specific receptors (CARs). My research also focus on gene modifications aimed at improving the homing of T cells to tumor cells , improving their proliferation and persistence and finally overcoming  the inhibitory effect of the tumor environments, including effects of regulatory T (Treg) cells.

Nagarajan, Shanmugam
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Cardiovascular Biology, Immunology, Metabolism, Pathogenesis & Infection, Pathology, Translational Medicine

The main goal of the Nagarajan lab research program focuses on how the innate branch of the immune system regulates adaptive immunity, as it relates to the pathogenesis of autoimmune disease such as lupus or rheumatoid arthritis (RA)-induced cardiovascular disease.   IgG-Fcgamma receptor (FcgR)-mediated signaling is critical for mediating host defense against infectious disease, but they also mediate disease pathology in autoimmunity and atherosclerosis. Specifically, we are studying the role of IgG-Fcgamma receptor (FcgR) signaling network in innate immune cells activation that contributes to autoantibody production and T cell subset activation associated with autoimmune, and cardiovascular diseases.  We are using a repertoire of relevant knockout mouse and humanized FcgR mouse models to address the questions of how FcgR-mediated signaling promotes autoimmune disease-induced atherosclerosis. As a translational component, we are collaborating with rheumatologists and cardiologists to analyze changes in innate and T cell subsets in patients with lupus or RA, who has premature atherosclerosis.

Shaikh, S. Raza
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Nutrition

RESEARCH INTEREST
Biochemistry, Cardiovascular Biology, Immunology, Metabolism, Translational Medicine

The Shaikh lab aims to understand how differing dietary fatty acids regulate outcomes associated with immunity and metabolism in the context of obesity, type 2 diabetes, and cardiovascular diseases. The lab conducts studies at the human level and in mouse models.  We are currently focused on the mechanisms by which omega-3 fatty acids improve chronic inflammation and humoral immunity upon viral infection in obesity. We are also elucidating how select fatty acids disrupt the biophysical organization of the inner mitochondrial membrane of differing cell types and thereby respiratory activity.