Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Scherrer, Gregory
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Genetics & Molecular Biology, Neuroscience, Pharmacology

RESEARCH INTEREST
Cell Biology, Genetics, Neurobiology, Pharmacology, Physiology

Pain is a complex experience with sensory and emotional components. While acute pain is essential for survival, chronic pain is a debilitating disease accompanied by persistent unpleasant emotions. Efficient medications against chronic pain are lacking, and the absence of alternative to opioid analgesics has triggered the current Opioid Epidemic. Our lab studies how our nervous system generates pain perception, at the genetic, molecular, cellular, neural circuit, and behavioral levels. We also seek to understand how opioids alter activity in neural circuits to produce analgesia, but also side effects such as tolerance, addiction and respiratory depression. To this aim, we investigate the localization, trafficking and signaling properties of opioid receptors in neurons. These studies clarify pain and opioid mechanisms for identifying novel non-addictive drug targets to treat pain and strategies to dissociate opioid analgesia from deleterious effects.

Dowen, Rob
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Genetics & Molecular Biology

RESEARCH INTEREST
Cell Biology, Cell Signaling, Computational Biology, Genetics, Genomics, Metabolism

Appropriate allocation of cellular lipid stores is paramount to maintaining organismal energy homeostasis. Dysregulation of these pathways can manifest in human metabolic syndromes, including cardiovascular disease, obesity, diabetes, and cancer. The goal of my lab is to elucidate the molecular mechanisms that govern the storage, metabolism, and intercellular transport of lipids; as well as understand how these circuits interface with other cellular homeostatic pathways (e.g., growth and aging). We utilize C. elegans as a model system to interrogate these evolutionarily conserved pathways, combining genetic approaches (forward and reverse genetic screens, CRISPR) with genomic methodologies (ChIP-Seq, mRNA-Seq, DNA-Seq) to identify new components and mechanisms of metabolic regulation.

Gupta, Gaorav
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Genetics & Molecular Biology

RESEARCH INTEREST
Cancer Biology, Cell Biology, Genetics, Molecular Biology, Translational Medicine

Our lab studies pathways that regulate genome instability in cancer, which is a cancer hallmark associated with clinically aggressive disease. We utilize CRISPR-enhanced murine models of breast cancer to interrogate the impact of DNA damage response gene mutations on cancer pathogenesis and therapeutic susceptibility. We have identified an alternative DNA double strand break repair pathway as a driver of genome instability in a subset of breast cancers, and are investigating its potential as a therapeutic target.  We also study how deficiencies in DNA repair can impact responsiveness to immunotherapy. Finally, we have developed sensitive assays for detecting circulating tumor DNA (i.e., “liquid biopsy”) in cancer patients, with an interest in validating predictive biomarkers for personalized cancer therapy.  These translational studies are currently being performed in patients with breast cancer and cancers that arise in the head/neck.

Linnstaedt, Sarah
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology

RESEARCH INTEREST
Behavior, Computational Biology, Genetics, Neurobiology, Translational Medicine

Trauma and stress are common in life. While most individuals recover following trauma/stress exposure, a substantial subset will go on to develop adverse neuropsychiatric outcomes such as chronic pain, posttraumatic stress disorder (PTSD), depression, and postconcussive symptoms. Our research is focused on understanding individual vulnerability to such outcomes and to identify novel biomarkers and targets for therapeutic intervention. We use translational research approaches, including bioinformatics analysis of large prospective human cohort data, animal model research, and systems and molecular biology to better understand pathogenic mechanisms. We are particularly interested in the genetic and psychiatric/social factors influencing adverse outcome development, as well as biological sex differences that contribute to higher rates of these outcomes in women vs men.

Dominguez, Daniel
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Pharmacology

RESEARCH INTEREST
Cell Signaling, Computational Biology, Genetics, Molecular Biology, Pharmacology

The Dominguez lab studies how gene expression is controlled by proteins that bind RNA. RNA binding proteins control the way RNAs are transcribed, spliced, polyadenylated, exported, degraded, and translated. Areas of research include: (1) Altered RNA-protein interactions in cancer; (2) RNA binding by noncanonical domains; and (3) Cell signaling and RNA processing.

Poulton, John S.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cell Biology, Developmental Biology, Genetics, Immunology, Translational Medicine

Many diseases of the kidney remain poorly understood. My research program spans a range of disciplines (e.g., genetics, cell biology, immunology) and experimental approaches (e.g., microscopy, molecular biology, biochemistry, and model organisms—Drosophila and zebrafish) to answer fundamental questions regarding the genetic and cellular basis of kidney function and disease. We are also developing novel assays to study autoimmune diseases of the kidney, with the goal of facilitating patient diagnosis and treatment. By applying modern tools to long-standing problems, we hope to translate our research findings to improved patient outcomes.

Won, Hyejung
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Genetics & Molecular Biology, Neuroscience

RESEARCH INTEREST
Bioinformatics, Genetics, Genomics, Molecular Biology, Neurobiology

We try to bridge the gap between genetic risk factors for psychiatric illnesses and neurobiological mechanisms by decoding the regulatory relationships of the non-coding genome. In particular, we implement Hi-C, a genome-wide chromosome conformation capture technique to identify the folding principle of the genome in human brain. We then leverage this information to identify the functional impacts of the common variants associated with neuropsychiatric disorders.

Tsagaratou, Ageliki
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Genetics & Molecular Biology, Microbiology & Immunology

RESEARCH INTEREST
Cancer Biology, Genetics, Genomics, Immunology, Molecular Biology

We aim to dissect the epigenetic and transcriptional mechanisms that shape T cell lineage specification during development in the thymus and in the periphery upon antigen (microbial, viral) encounter. Aberrant expression of transcription and epigenetic factors can result in inflammation, autoimmunity or cancer. We are using gene deficient mouse models, multiparameter Flow Cytometry, molecular biology assays and next generation sequencing technologies to elucidate the regulatory information in cells of interest (transcriptome, epigenome, transcription factor occupancy).

Schrider, Daniel
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology

RESEARCH INTEREST
Bioinformatics, Computational Biology, Evolutionary Biology, Genetics, Genomics

The Schrider Lab develops and applies computational tools to use population genetic datasets to make inferences about evolutionary history. Our research areas include but are not limited to: characterizing the effects natural selection on genetic variation within species, identifying genes responsible for recent adaptation, detecting genomic copy number variants and other weird types of mutations, and adapting machine learning tools for application to questions in population genetics and evolution. Study organisms include humans, the fruit fly Drosophila melanogaster and its relatives, and the malaria vector mosquito Anopheles gambiae.

Hoadley, Katherine A.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Computational Biology, Genetics, Genomics

My research interest is in genomic characterization and integrative genomic approaches to better understand cancer. My group is part of the NCI Genome Data Analysis Center focused on RNA expression analysis. We have a number of ongoing projects including developing molecular classifications for potential clinical utility, developing methods for deconvolution to understand bulk tissue heterogeneity, analysis of driver negative cancers, and analysis of ancestry markers with cancer features.