Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Campillo Minano, Beatriz

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Bioinformatics, Computational Biology, Genetics

“I am interested in developing computational methods and algorithms for solving biological questions. I would like to focus on machine-learning approaches for genetics or structural biology. I am also interested in the development of this approaches as software tools or pipelines to ensure their generalizable usage”

Bonanno, Maddie

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Computational Biology, Genetics

“I hope to pursue research in computational biology: I want to leverage computer science and computational tools to investigate novel questions in biomedicine. My major interests lie in non-communicable diseases (including acute injuries like TBI), chronic pain, gene-environment interactions, genetic variation, and chronic illness. I’d love to explore any of the above topics through computational drug discovery, machine learning, genome-wide association studies, etc. My research interests are computational in nature, but I am not opposed to incorporating a wet lab component.”

Barry, Aure

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Cell Biology, Developmental Biology, Genetics

“I am interested in understanding the epigenetic mechanisms that control cell fate determination, and how the dysregulation of these mechanisms can influence human health and disease.”

Anderson, Ashlyn (Ash)

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Evolutionary Biology, Genetics, Genomics, Molecular Biology, Pathogenesis & Infection

“I have broad equal interest in pathogenesis/infection (new to me but has always captivated my interests) and in basic science questions related to chromatin, genetics, and evolution (familiar to me + I already know I love researching these kinds of questions!) I am hoping to narrow down and explore my interests between these further with rotations in virology, genetics-genomics, or bacteriology labs. “

Schrank, Travis

EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Bioinformatics, Biophysics, Cancer Biology, Cancer Signaling & Biochemistry, Chemical Biology, Computational Biology, Evolutionary Biology, Genetics, Genomics, Molecular Biology, Molecular Mechanisms of Disease, Translational Medicine, Virology

I am a surgeon-scientist specialized in head and neck cancers. My goal is to address translationalquestions with genomic data and bioinformatic methods, as well as benchtop experimentation. My clinical practice as a head and neck cancer surgeon also influences my research by helping me seek solutions to problems that will directly inform gaps in the current treatment protocols.

I have developed a strong interest in HPV genomics as well as HPV/host genome integrations, as these factors are intrinsically related to transcriptional diversity and patient outcomes in HPV-associated head and neck cancers. Our work has helped to demonstrate that a novel mechanism of HPV-mediated oncogenesis requiring NF-kB activation is present in nearly 50% of oropharyngeal tumors. In this vein, we are aggressively investigating the cellular interplay between the NF-kB pathway and persistent HPV infection, tumor radiation response, NRF2 signaling, and more.

Another outgrowth of this work has been investigating APOBEC3B and its non-canonical roles in regulating transcription. Our preliminary work has demonstrated that APOBEC3B has surprisingly strong transcriptional effects in HPV+ HNSCC cells and may promote oncogenesis and tumor maintenance by suppressing the innate immune response and influencing the HPV viral lifecycle.

Our group also have a strong interest in translational genomic studies. Our group is working to develop methods that will make gene expression-based biomarkers more successful in the clinic, as well as studying many aspects of genomic alterations that contribute to the development of squamous cell carcinomas.

Chen, Jiakun
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Brain Development, Cell Biology, Developmental Biology, Genetics, Model Organisms, Neurobiology, Neurodevelopmental Disorders

The goal of our research is to understand how astrocytes develop and how they interact with neural elements during nervous system formation, function, and maintenance. Our lab uses fruit fly Drosophila and zebrafish Danio rerio to explore fundamental aspects of astrocyte biology. We leverage the powerful genetics and unparalleled molecular toolsets in flies to uncover gene function, and we exploit the advanced live-imaging techniques in zebrafish to study astrocyte-neuron interactions in vivo.

Girault, Jessica
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Behavior, Brain Development, Genetics, Neurodevelopmental Disorders

We are a lab using state-of-the art neuroimaging techniques to study brain development and its links to emerging cognition and behavior in young infants and children. We study both typically developing infants and those at risk for neurodevelopmental disorders, including autism spectrum disorder. We are particularly interested in how family study designs can help us understand genetic influences on brain development.

Liu, Qingyun
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology, Microbiology & Immunology

RESEARCH INTEREST
Bacteriology, Bioinformatics, Ecology, Evolutionary Biology, Genetics, Genomics, Microscopy/Imaging, Molecular Biology, Molecular Mechanisms of Disease, Pathogenesis & Infection

Infectious diseases due to highly pathogenic microbes continue to pose a persistent and evolving threat to humans. In this laboratory, we study the evolutionary mechanisms underlying drug resistance and transmissibility in bacterial pathogens, including Mycobacterium tuberculosis and Mycobacterium abscessus, among others.

Lee, Craig
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmaceutical Sciences

RESEARCH INTEREST
Cardiovascular Disease, Genetics, Metabolism, Pharmacology, Translational Medicine

Craig Lee, Pharm.D, Ph.D. is a professor in the UNC Eshelman School of Pharmacy’s Division of Pharmacotherapy and Experimental Therapeutics (DPET). A key aspect of DPET’s mission is to optimize drug therapy through translating experimental and clinical pharmacology discoveries into precision medicine and accelerating application of these discoveries to improve patient care.

Dr. Lee is trained as a clinical/translational pharmaceutical scientist with expertise in cytochrome P450 metabolism, cardiovascular experimental therapeutics, and precision medicine/pharmacogenomics. He is an active member of the UNC McAllister Heart Institute and UNC Program for Precision Medicine in Healthcare, and has an adjunct faculty appointment in the UNC School of Medicine’s Division of Cardiology.

The overall objective of Dr. Lee’s research program is to improve the understanding of the central mechanisms underlying inter-individual variability in drug response as a means to develop novel therapeutic strategies that will improve public health. A major scientific focus of the Lee laboratory is the metabolism of drugs and eicosanoids by the cytochromes P450 enzyme system. The major therapeutic area of application of their research is cardiovascular and metabolic disease.

The Lee laboratory seeks to identify and elucidate the key factors that exacerbate inter-individual variability in the metabolism of and response to drugs currently on the market, and determine whether implementation of genomic and biomarker-guided drug selection and dosing strategies can reduce this variability in metabolism and response and improve patient outcomes. The Lee laboratory also seeks to develop a thorough understanding of how cytochrome P450-derived eicosanoids (bioactive lipid mediators of arachidonic acid) regulate hepatic and extra-hepatic inflammatory responses, and determine whether modulation of this pathway will serve as an effective anti-inflammatory and end-organ protective therapeutic strategy for cardiovascular and metabolic disease. Using genomics and biomarkers, the lab seeks to translate their preclinical discoveries into humans and determine which subsets of the population may be most likely to respond to the therapeutic strategies under evaluation in the laboratory.

The Lee laboratory is a highly collaborative and translational research program that integrates mechanistically-driven rodent and cell-based preclinical models with observational and interventional clinical studies. They have received funding from the National Institutes of Health and American Heart Association, authored over 100 manuscripts and over 100 abstracts in the areas of cytochromes P450, eicosanoid and drug metabolism, pharmacogenomics, and experimental therapeutics. Dr. Lee has served as the major research advisor for over 40 graduate students, post-doctoral fellows, and professional students.

Raffield, Laura
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology

RESEARCH INTEREST
Genetics, Genomics

Keywords: genetic epidemiology, human genetics, genome-wide association studies, precision medicine, multi-omics, cardiovascular disease, inflammation, hematological traits

In my research program, I use human genomics and multi-omics to understand inherited and environmental risk factors for cardiometabolic diseases and related quantitative traits. I work to link genetic variants to function through integration with multi-omics data, including transcriptomic, methylation, proteomic, and metabolomic measures. This work has important implications for cardiometabolic risk prediction across diverse populations and improved understanding of disease biology. A focus on understudied African American and Hispanic/Latino populations is a central theme of my research; human genetics research is dramatically unrepresentative of global populations, with ~95% of genome-wide association study participants of European or East Asian ancestry. As complex trait genetics moves into the clinic, increasing diversity is essential to ensure that all populations benefit from the promise of precision medicine.

I play a leadership role in collaborative efforts in human genetics, for example serving as a Genetics Working Group co-chair for the Jackson Heart Study (JHS), one of the largest population based studies of African Americans, and an Inflammation/Hematology working group co-chair for the Population Architecture Using Genomics and Epidemiology (PAGE) consortium. I am also a co-convener of the Multi-Omics working group for the NHLBI Trans-Omics for Precision Medicine (TOPMed) program.