Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Winfield, Brittanie

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Computational Biology, Genetics

“I am interested in studying at how life experiences and habits can influence diseases (mental health disorders, metabolism, cardiovascular health, etc. – not cancer) through epigenetic modifications. I hope to be able to do this research through a computational science and bioinformatics lens and to have access to human cohort data.”

Chou, Chloe

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Genetics, Toxicology

“My research interests lie in answering how environmental exposures may interact with different risk factors such as sex, age, and genetics in the pathogenesis of diseases. I am also interested in exploring the epigenetic and epigenomic changes that occur after environmental exposures. I am partial to inhalational toxicology but am also excited to explore other areas of toxicology.”

Cully, David

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Genetics, Molecular Biology

“I am interested in using molecular genetic approaches to study the proteins and signaling pathways responsible for inheritable conditions and metabolic processes in eukaryotes. I believe that model organisms are an especially valuable tool for investigating these targets thanks to the wide array of molecular genetic tools available.”

Scoville, Deena

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Genetics, Pathology, Translational Medicine

“I am interested in studying genetics, specifically epigenetics in cancer and disease. I am specifically interested in endometrial cancer, infertility, and other female diseases. I also have interested in translational medicine.”

Frazier, Leah

EMAIL

PHD PROGRAM

RESEARCH INTEREST
Cancer Biology, Genetics, Pathology

“I am interested in mechanisms that underlie tumor growth, progression, and metastasis. I am fascinated by topics such as meiotic and mitotic recombination, gene regulation, chromatin biology, and cell polarity regulation. I am also interested in the regulation of tumorigenesis and generalized drug discovery.”

Lee, Craig
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmaceutical Sciences

RESEARCH INTEREST
Cardiovascular Disease, Genetics, Metabolism, Pharmacology, Translational Medicine

Craig Lee, Pharm.D, Ph.D. is a professor in the UNC Eshelman School of Pharmacy’s Division of Pharmacotherapy and Experimental Therapeutics (DPET). A key aspect of DPET’s mission is to optimize drug therapy through translating experimental and clinical pharmacology discoveries into precision medicine and accelerating application of these discoveries to improve patient care.

Dr. Lee is trained as a clinical/translational pharmaceutical scientist with expertise in cytochrome P450 metabolism, cardiovascular experimental therapeutics, and precision medicine/pharmacogenomics. He is an active member of the UNC McAllister Heart Institute and UNC Program for Precision Medicine in Healthcare, and has an adjunct faculty appointment in the UNC School of Medicine’s Division of Cardiology.

The overall objective of Dr. Lee’s research program is to improve the understanding of the central mechanisms underlying inter-individual variability in drug response as a means to develop novel therapeutic strategies that will improve public health. A major scientific focus of the Lee laboratory is the metabolism of drugs and eicosanoids by the cytochromes P450 enzyme system. The major therapeutic area of application of their research is cardiovascular and metabolic disease.

The Lee laboratory seeks to identify and elucidate the key factors that exacerbate inter-individual variability in the metabolism of and response to drugs currently on the market, and determine whether implementation of genomic and biomarker-guided drug selection and dosing strategies can reduce this variability in metabolism and response and improve patient outcomes. The Lee laboratory also seeks to develop a thorough understanding of how cytochrome P450-derived eicosanoids (bioactive lipid mediators of arachidonic acid) regulate hepatic and extra-hepatic inflammatory responses, and determine whether modulation of this pathway will serve as an effective anti-inflammatory and end-organ protective therapeutic strategy for cardiovascular and metabolic disease. Using genomics and biomarkers, the lab seeks to translate their preclinical discoveries into humans and determine which subsets of the population may be most likely to respond to the therapeutic strategies under evaluation in the laboratory.

The Lee laboratory is a highly collaborative and translational research program that integrates mechanistically-driven rodent and cell-based preclinical models with observational and interventional clinical studies. They have received funding from the National Institutes of Health and American Heart Association, authored over 100 manuscripts and over 100 abstracts in the areas of cytochromes P450, eicosanoid and drug metabolism, pharmacogenomics, and experimental therapeutics. Dr. Lee has served as the major research advisor for over 40 graduate students, post-doctoral fellows, and professional students.

Raffield, Laura
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology

RESEARCH INTEREST
Genetics, Genomics

Keywords: genetic epidemiology, human genetics, genome-wide association studies, precision medicine, multi-omics, cardiovascular disease, inflammation, hematological traits

In my research program, I use human genomics and multi-omics to understand inherited and environmental risk factors for cardiometabolic diseases and related quantitative traits. I work to link genetic variants to function through integration with multi-omics data, including transcriptomic, methylation, proteomic, and metabolomic measures. This work has important implications for cardiometabolic risk prediction across diverse populations and improved understanding of disease biology. A focus on understudied African American and Hispanic/Latino populations is a central theme of my research; human genetics research is dramatically unrepresentative of global populations, with ~95% of genome-wide association study participants of European or East Asian ancestry. As complex trait genetics moves into the clinic, increasing diversity is essential to ensure that all populations benefit from the promise of precision medicine.

I play a leadership role in collaborative efforts in human genetics, for example serving as a Genetics Working Group co-chair for the Jackson Heart Study (JHS), one of the largest population based studies of African Americans, and an Inflammation/Hematology working group co-chair for the Population Architecture Using Genomics and Epidemiology (PAGE) consortium. I am also a co-convener of the Multi-Omics working group for the NHLBI Trans-Omics for Precision Medicine (TOPMed) program.

Miller, Brian
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Genetics & Molecular Biology, Microbiology & Immunology

RESEARCH INTEREST
Cancer Biology, Genetics, Immunology, Systems Biology, Translational Medicine

The Miller lab is working to improve the efficacy of immunotherapy to treat cancer. We aim to develop personalized immunotherapy approaches based on a patient’s unique cancer mutations. We have a particular interest in myeloid cells, a poorly understood group of innate immune cells that regulate nearly all aspects of the immune response. Using patient samples, mouse models, single-cell profiling, and functional genomics approaches, we are working to identify novel myeloid-directed therapies that allow us to overcome resistance and successfully treat more patients.

Lin, Jessica
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology

RESEARCH INTEREST
Genetics, Genomics, Molecular Biology, Molecular Medicine, Pathogenesis & Infection

Dr. Lin is an infectious disease physician-scientist whose research lies at the interface of clinical and molecular studies on malaria. My current projects focus on 1) determinants of malaria transmission from human hosts to mosquitos and 2) the epidemiology and relapse patterns of Plasmodium ovale in East Africa. Work in my lab involves applying molecular tools (real-time PCR, amplicon deep sequencing, whole genome sequencing, and to a lesser extent antigen and antibody assays) to samples collected in clinical field studies to learn about malaria epidemiology, transmission, and pathogenesis.

Maeda, Nobuyo

EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology, Nutrition, Pathobiology & Translational Science

RESEARCH INTEREST
Cardiovascular Biology, Genetics, Metabolism, Pathology, Translational Medicine

Overall goal of our research is to gain better knowledge of gene-gene and gene-environment interactions in common cardiovascular conditions in humans. We have been modifying mouse genome in such a way that resulting mice can model quantitative variations of a specific gene product that occur in human population. With these mice, we explore causes, mechanisms, and nutritional treatments of cardiovascular complications resulted from common conditions such as diabetes, lung infections, and pregnancy-associated hypertension. Current focus is on the oxidative stress and effects of vitamin B12 as antioxidant and beyond.