Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Willett, Christopher
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology

RESEARCH INTEREST
Ecology, Evolutionary Biology, Genetics, Organismal Biology, Physiology

My lab concentrates on studying the molecular genetic basis of the evolutionary processes of adaptation and speciation. The questions we ask are what are the sequence changes that lead to variation between species and diversity within species, and what can these changes tell us about the processes that lead to their evolution. We use a number of different techniques to answer these questions, including molecular biology, sequence analyses (i.e. population genetics and molecular evolution techniques), physiological studies, and examinations of whole-organism fitness. Currently work in the lab has focused on a intertidal copepod species that is an excellent model for the initial stages of speciation (and also provides opportunities to study how populations of this species adapt to their physical environment).

Wolfgang, Matthew C.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology, Oral & Craniofacial Biomedicine

RESEARCH INTEREST
Bacteriology, Cell Signaling, Genetics, Molecular Biology, Pathogenesis & Infection

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen responsible for a variety of diseases in individuals with compromised immune function. Dr. Wolfgang’s research focuses on the pathogenesis of Pseudomonas aeruginosa infection.  The goal of his research is to understand how this opportunistic pathogen coordinates the expression of virulence factors in response to the host environment. Projects in his laboratory focus on the regulation of intracellular cyclic AMP, a second messenger signaling molecule that regulates P. aeruginosa virulence. Dr. Wolfgang’s laboratory uses a combination of molecular genetics and biochemical approaches to understand how P. aeruginosa controls the synthesis, degradation and transport of cAMP in response to extracellular cues. Other related projects focus on the regulation and function of P. aeruginosa Type IV pili (TFP). TFP are cAMP regulated surface organelles that are critical for bacterial colonization of human mucosal tissue. In addition, the Wolfgang lab is actively involved in characterizing the lung microbiome of patients with chronic airway diseases and studying the interactions between P. aeruginosa and other bacterial species during mixed infections.

Yeh, Elaine
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology

RESEARCH INTEREST
Biophysics, Cancer Biology, Cell Biology, Genetics

The site of microtubule attachment to the chromosome is the kinetochore, a complex of over 60 proteins assembled at a specific site on the chromosome, the centromere. Almost every kinetochore protein identified in yeast is conserved through humans and the organization of the kinetochore in yeast may serve as the fundamental unit of attachment. More recently we have become interested in the role of two different classes of ATP binding proteins, cohesions (Smc3, Scc1) and chromatin remodeling factors (Cac1, Hir1, Rdh54) in the structural organization of the kinetochore and their contribution to the fidelity of chromosome segregation.

Zhang, Yanping
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology, Pharmacology

RESEARCH INTEREST
Cancer Biology, Cell Biology, Developmental Biology, Genetics, Molecular Biology

We employ modern technologies – genomics, proteomics, mouse models, multi-color digital imaging, etc. to study cancer mechanisms. We have made major contributions to our understanding of the tumor suppressor ARF and p53 and the oncoprotein Mdm2.

Zylka, Mark J.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Cell Biology, Genetics, Genomics, Molecular Biology, Neurobiology, Physiology

Our research is focused on two general areas:  1. Autism and 2. Pain.  Our autism research is focused on topoisomerases and other transcriptional regulators that were recently linked to autism.  We use genome-wide approaches to better understand how these transcriptional regulators affect gene expression in developing and adult neurons (such as RNA-seq, ChIP-seq, Crispr/Cas9 for knocking out genes).  We also assess how synaptic function is affected, using calcium imaging and electrophysiology.   In addition, we are performing a large RNA-seq screen to identify chemicals and drugs that increase risk for autism.   /  / Our pain research is focused on lipid kinases that regulate pain signaling and sensitization.  This includes work with cultured dorsal root ganglia (DRG) neurons, molecular biology and behavioral models of chronic pain.  We also are working on drug discovery projects, with an eye towards developing new therapeutics for chronic pain.

Berg, Jonathan
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology, Pathobiology & Translational Science

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Genetics, Genomics, Translational Medicine

My research group is broadly interested in the application of sequencing technologies in medical genetics and genomics, using a combination of wet lab and computational approaches.  As a clinician, I am actively involved in the care of patients with hereditary disorders, and the research questions that my group investigates have direct relevance to patient care.  One project uses genome sequencing in families with likely hereditary cancer susceptibility in order to identify novel genes that may be involved in monogenic forms of cancer predisposition.  Another major avenue of investigation examines the use of genome-scale sequencing in clinical medicine, ranging from diagnostic testing to newborn screening, to screening in healthy adults.

Calabrese, J. Mauro
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Genetics & Molecular Biology, Pharmacology

RESEARCH INTEREST
Bioinformatics, Cell Biology, Computational Biology, Genetics, Genomics, Molecular Biology, Pharmacology, Stem Cells

Our lab is trying to understand the mechanisms by which long noncoding RNAs orchestrate the epigenetic control of gene expression. Relevant examples of this type of gene regulation occur in the case of X-chromosome inactivation and autosomal imprinting. We specialize in genomics, but rely a combination of techniques —  including genetics, proteomics, and molecular, cell and computational biology — to study these processes in both mouse and human stem and somatic cell systems.

Tarantino, Lisa M.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology, Neuroscience, Pharmaceutical Sciences

RESEARCH INTEREST
Behavior, Genetics, Genomics, Molecular Biology, Neurobiology, Pharmacology, Systems Biology

The Tarantino lab studies addiction and anxiety-related behaviors in mouse models using forward genetic approaches. We are currently studying a chemically-induced mutation in a splice donor site that results in increased novelty- and cocaine-induced locomotor activity and prolonged stress response. We are using RNA-seq to identify splice variants in the brain that differ between mutant and wildtype animals. We are also using measures of initial sensitivity to cocaine in dozens of inbred mouse strains to understand the genetics, biology and pharmacokinetics of acute cocaine response and how initial sensitivity might be related to addiction. Finally, we have just started a project aimed at studying the effects of perinatal exposure to dietary deficiencies on anxiety, depression and stress behaviors in adult offspring. This study utilizes RNA-seq and a unique breeding design to identify parent of origin effects on behavior and gene expression in response to perinatal diet.

Ostrowski, Lawrence E
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cell Biology, Genetics, Molecular Biology, Pathogenesis & Infection

The overall focus of research in my laboratory is to improve the diagnosis and treatment of airway diseases, especially those that result from impaired mucociliary clearance. In particular, our efforts focus on the diseases cystic fibrosis and primary ciliary dyskinesia, two diseases caused by genetic mutations that impair mucociliary clearance and lead to recurrent lung infections. The work in our laboratory ranges from basic studies of ciliated cells and the proteins that make up the complex structure of the motile cilia, to translational studies of new drugs and gene therapy vectors. We use a number of model systems, including traditional and inducible animal models, in vitro culture of differentiated mouse and human airway epithelial cells, and direct studies of human tissues. We also use a wide range of experimental techniques, from studies of RNA expression and proteomics to measuring ciliary activity in cultured cells and whole animals.

Voruganti, Saroja
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Nutrition

RESEARCH INTEREST
Cardiovascular Biology, Genetics, Genomics

My research interests are focused on understanding the effects of genetic and environmental factors and their interaction on complex human diseases using a combination of statistical, molecular and bioinformatics approaches. My specific interests include understanding the influence of genetic variants on serum uric acid levels (a biomarker for renal-cardiovascular disease), effect of gene by diet interactions on serum uric acid levels and associated renal-cardiovascular disease risk factors and identification of functional variants affecting these disorders that will lead to novel treatment options.