Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Hathaway, Nathaniel A.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology, Pharmaceutical Sciences

RESEARCH INTEREST
Cancer Biology, Cell Biology, Chemical Biology, Drug Discovery, Molecular Medicine

The Hathaway lab is focused on understanding the biological events responsible for dynamically regulating the selective expression of the mammalian genome. In multicellular organisms, genes must be regulated with high precision during stem cell differentiation to achieve normal development. Pathologically, the loss of proper gene regulation caused by defects in chromatin regulatory enzymes has been found to be a driving force in cancer initiation and progression. My lab uses a combination of chemical biology and cell biology approaches to unravel the molecular mechanisms that govern gene expression. We utilize new tools wielding an unprecedented level of temporal control to visualize changes in chromatin structure and function in mammalian cells and animal models. In addition, we seek to identify small molecule inhibitors that are selective for chromatin regulatory enzymes with the potential for future human therapeutics.

Hicks, Leslie M.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Chemistry

RESEARCH INTEREST
Biochemistry, Bioinformatics, Chemical Biology, Plant Biology, Systems Biology

Research in the Hicks lab focuses on development and implementation of mass spectrometric approaches for protein characterization including post-translational modifications, as well as the identification of bioactive peptides/proteins from plants. Keywords: proteins / peptides, proteomics, PTM, enzymes, analytical chemistry, mass spectrometry, separations / chromatography, plants, algae.

Loeser, Richard F.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Cell Biology, Cell Signaling, Chemical Biology, Molecular Medicine, Translational Medicine

The Loeser lab uses a combination of in vitro studies in articular chondrocytes and in vivo studies in mice to examine molecular mechanisms of joint tissue destruction in aging and osteoarthritis. A major focus of this work is examining how reactive oxygen species regulate cell signaling through oxidation of Cys residues in specific kinases and phosphatases. Pathways of interest include integrin mediated signaling that stimulates matrix metalloproteinase (MMP) expression and IGF-I signaling that stimulates matrix production. Oxidative stress disrupts the balance in the activity of these pathways to favor matrix destruction over repair contributing to the development of osteoarthritis.