Research Interest: Cancer Biology
Name | PhD Program | Research Interest | Publications |
---|---|---|
Pruitt, Kevin WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Pruitt lab research involves 3 broad areas. Interest in the first area (cancer epigenetics) stemmed from discoveries made during postdoctoral training assessing how tumor progression disrupts epigenetic mechanisms of control. The second area (Wnt pathway regulation) was the result of early screens as an Assistant Professor at LSU Health Sciences Center. We uncovered novel regulators of oncogenic Wnt signaling and published the first observation that epigenetic enzymes regulate a critical mediator of Wnt signaling (Dishevelled). The third project involves elucidating mechanisms of aromatase regulation which emerged from the obsession of early trainees in the lab with understanding mechanisms cancer-associated estrogen biosynthesis. Within the context of these three projects, I have mentored and guided multiple trainees at every level over the course of 17 years. |
Yates, Melinda PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our translational research lab is focused on the earliest changes that occur in the uterus (endometrium) during cancer development related to obesity and hereditary DNA repair defects. We use preclinical tools (rodents, organoids, and cell lines) to probe mechanisms of endometrial cancer pathogenesis, in parallel with human tissue studies. Our overall goal is to understand how environmental factors, including obesity, hormones, and other exposures, influence endometrial cancer development and disparities so that we can use pharmacologic agents to prevent or reverse cancer development. |
Fedoriw, Yuri WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our research interests focus on the immunologic and genetic mechanisms of lymphomagenesis, particularly in the setting of HIV infection. While hematologic malignancies and lymphoproliferative disorders in sub-Saharan Africa (SSA) arise under intrinsic and extrinsic pressures very different from those in the United States, comprehensive analyses of these diseases have not been performed. We use advanced sequencing, immunophenotypic and cellular analyses to address gaps in our understanding of lymphomagenesis and tumor microenvironment in the context of HIV-associated immune dysregulation, with the goal of translation to clinical care and future clinical trials. |
Freeman, Ronit WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My lab focuses on developing bioinspired molecular constructs and material platforms that can mimic proteins and be programmed to respond to stimuli resulting from biomolecular recognition. Major efforts are directed to design peptide- and nucleic acid-based scaffolds or injectable nanostructures to create artificial extracellular matrices that can directly signal cells. |
Miller, Brian WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The Miller lab is working to improve the efficacy of immunotherapy to treat cancer. We aim to develop personalized immunotherapy approaches based on a patient’s unique cancer mutations. We have a particular interest in myeloid cells, a poorly understood group of innate immune cells that regulate nearly all aspects of the immune response. Using patient samples, mouse models, single-cell profiling, and functional genomics approaches, we are working to identify novel myeloid-directed therapies that allow us to overcome resistance and successfully treat more patients. |
Berlow, Rebecca WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our lab is interested in the molecular mechanisms of adaptive stress responses. These responses to environmental or metabolic stress are essential for survival but frequently dysregulated in disease. We use an integrated approach combining biophysical, structural, and biochemical methods to investigate the roles of intrinsically disordered proteins and dynamic enzymes that orchestrate these critical stress responses, with the ultimate goal of developing new approaches for modulating the functions of dynamic molecules. |
Thaxton, Jessica WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The Thaxton laboratory studies the intersection of stress and metabolism in immune cells for applications in cancer immunotherapy. Our pursuits center around the biology of the endoplasmic reticulum (ER). We aim to define how stress on the ER defines changes in protein homeostasis, metabolic fate, and antitumor efficacy of immune subsets in human tumors. In order to pursue our goals we collaborate vigorously with clinicians, creating a highly translational platform to expand our discoveries. Moreover, we design unique mouse models and use innovate technologies such as metabolic tracing, RNA-sequencing, and spectral flow cytometry to study how the stress of solid tumors impacts immune function. Ultimately, we aim to discover new ways to restore immune function in solid tumors to offer unique therapies for cancer patients. |
Brunk, Elizabeth WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
A growing body of work in the biomedical sciences generates and analyzes omics data; our lab’s work contributes to these efforts by focusing on the integration of different omics data types to bring mechanistic insights to the multi-scale nature of cellular processes. The focus of our research is on developing systems genomics approaches to study the impact of genomic variation on genome function. We have used this focus to study genetic and molecular variation in both natural and engineered cellular systems and approach these topics through the lens of computational biology, machine learning and advanced omics data integration. More specifically, we create methods to reveal functional relationships across genomics, transcriptomics, ribosome profiling, proteomics, structural genomics, metabolomics and phenotype variability data. Our integrative omics methods improve understanding of how cells achieve regulation at multiple scales of complexity and link to genetic and molecular variants that influence these processes. Ultimately, the goal of our research is advancing the analysis of high-throughput omics technologies to empower patient care and clinical trial selections. To this end, we are developing integrative methods to improve mutation panels by selecting more informative genetic and molecular biomarkers that match disease relevance. |
Merker, Jason WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our laboratory is focused on translating novel molecular biomarkers into clinical oncology practice, with the overarching goal of improving the care and survival of patients with cancer. Our group is highly collaborative and applies genomic, genetic, bioinformatic, informatic, statistical, and molecular approaches. Current projects in the laboratory include:
|
Alexander, Thomas WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Dr. Alexander works at the interface cancer genomics, clinical trials, and global pediatric oncology with three areas of research focus 1) Development and implementation of a novel genomic sequencing approaches for cancer diagnostics in low- and middle-income countries 2) Development, implementation, and de-implementation of diagnostic testing for genomic classification of pediatric cancer. 3) Investigation of new cancer therapeutics through early phase clinical trials for high-risk acute leukemia |