Research Interest: Cancer Biology
Name | PhD Program | Research Interest | Publications |
---|---|---|
McKay, Daniel WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Research in the lab focuses on how a single genome gives rise to a variety of cell types and body parts during development. We use Drosophila as an experimental system to investigate (1) how transcription factors access DNA to regulate complex patterns of gene expression, and (2) how post-translational modification of histones contributes to maintenance of gene expression programs over time. We combine genomic approaches (e.g. CUT&RUN/ChIP, FAIRE/ATAC followed by high-throughput sequencing) with Drosophila genetics and transgenesis to address both of these questions. |
Pylayeva-Gupta, Yuliya WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The goal of my research is to define molecular mechanisms of immune cell co-option by cancer cells, with the hope of identifying novel targets for immune cell reprogramming. Central to our approach is analysis immune cell subtypes in KRas-driven models of pancreatic cancer. We use cell and animals models to study signals important for pro-tumorigenic activity of immune cells, as well as define role of physiologically relevant oncogenic mutations in driving these signals and enabling immune escape. |
Dowen, Jill WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My lab studies how genes function within the three-dimensional context of the nucleus to control development and prevent disease. We combine genomic approaches (ChIP-Seq, ChIA-PET) and genome editing tools (CRISPR) to study the epigenetic mechanisms by which transcriptional regulatory elements control gene expression in embryonic stem cells. Our current research efforts are divided into 3 areas: 1) Mapping the folding pattern of the genome 2) Dynamics of three-dimensional genome organization as cells differentiate and 3) Functional analysis of altered chromosome structure in cancer and other diseases. |
Arthur, Janelle C. WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The Arthur lab is interested in mechanisms by which inflammation alters the functional capabilities of the microbiota, with the long-term goal of targeting resident microbes as a preventative and therapeutic strategy to lessen inflammation and reduce the risk of colorectal cancer. We utilize a unique and powerful in vivo system – germ-free and gnotobiotic mice – to causally link specific microbes, microbial genes, and microbial metabolites with health and disease in the gut. We also employ basic immunology and molecular microbiology techniques as well as next generation sequencing and bioinformatics to evaluate these essential host-microbe interactions. |
Baldwin, Albert S. WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our laboratory studies an amazing regulatory factor known as NF-kappaB. This transcription factor controls key developmental and immunological functions and its dysregulation lies at the heart of virtually all major human diseases. |
Ahmed, Shawn WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our research group utilizes the nematode C. elegans to investigate germ cell immortality: mechanisms that allow germ cells remain eternally youthful as they are transmitted from one generation to the next. We also study how telomerase functions at chromosome termini, as well as the consequences of telomere dysfunction. |