Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Pecot, Chad Victor
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Genetics & Molecular Biology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Nanomedicine, Pathology, Translational Medicine

Pecot Lab: Therapeutic RNAi to Teach Cancer how to “Heal” and Block Metastatic Biology

Synopsis: The Pecot lab is looking for eager, self-motivated students to join us in tackling the biggest problem in oncology, metastases. An estimated 90% of cancer patients die because of metastases. However, the fundamental underpinnings of what enables metastases to occur are poorly understood. The Pecot lab takes a 3-pronged approach to tackling this problem: 1) By studying the tumor microenvironment (TME), several projects are studying how cancers can be taught to “heal” themselves, 2) By studying how cancers manipulate non-coding RNAs (micro-RNAs, circle RNAs, snoRNAs, etc) to promote their metastatic spread, and 3) We are investigating several ways to develop and implement therapeutic RNA interference (RNAi) to tackle cancer-relevant pathways that are traditionally regarded as “undruggable”. Students joining the lab will be immersed in the development of novel metastatic models, modeling and studying the TME both in vitro and in vivo, using bioinformatic approaches to uncover mechanistic “roots”, and implementation of therapeutic approaches

Hicks, Leslie M.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Chemistry

RESEARCH INTEREST
Biochemistry, Bioinformatics, Chemical Biology, Plant Biology, Systems Biology

Research in the Hicks lab focuses on development and implementation of mass spectrometric approaches for protein characterization including post-translational modifications, as well as the identification of bioactive peptides/proteins from plants. Keywords: proteins / peptides, proteomics, PTM, enzymes, analytical chemistry, mass spectrometry, separations / chromatography, plants, algae.

Troester, Melissa
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Bioinformatics, Genomics, Nanomedicine, Pathology, Translational Medicine

Dr. Troester’s research focuses on stromal-epithelial interactions, genomics of normal breast tissue, breast cancer microenvironment, and molecular pathology of breast cancer progression. She is a Co-Investigator on the Carolina Breast Cancer Study (CBCS), a resource including breast tumors from thousands of African American women, and she is PI of the Normal Breast Study (NBS), a unique biospecimen resource of normal tissue from women undergoing breast surgery at UNC Hospitals. Dr. Troester has extensive experience in integrating multiple high dimensional data types. She is chair of the Normal Breast Committee for the Cancer Genome Atlas Project where she is leading coordination of histology, copy number, mutation, methylation, mRNA and microRNA expression data. She has more than a decade of experience working with genomic data and molecular biology of breast cancer progression and has published many papers in the area of breast cancer subtypes, breast microenvironment, and stromal-epithelial interactions. She has trained four postdocs, 12 predoctoral students and several undergraduates.

Marchetti, Adrian
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology

RESEARCH INTEREST
Biochemistry, Bioinformatics, Ecology, Genomics, Physiology

We are a biological oceanography lab that performs inquiry-based science by combining physiological and molecular approaches in laboratory isolates and natural communities to investigate how marine microorganisms are affected by their environment and in turn, influence ocean biogeochemistry and ecosystem dynamics. Particular interests include studying trace metals, such as iron, that are essential for the nutrition of phytoplankton and predicting the effects of future climate changes on phytoplankton distribution and abundance.  We implement the use of environmental genomic approaches (e.g. RNA-seq) to ascertain the ways in which marine microbes have adapted and acclimate to varying environmental conditions.

McKay, Daniel
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Developmental Biology, Genetics, Genomics, Molecular Biology

Research in the lab focuses on how a single genome gives rise to a variety of cell types and body parts during development. We use Drosophila as an experimental system to investigate (1) how transcription factors access DNA to regulate complex patterns of gene expression, and (2) how post-translational modification of histones contributes to maintenance of gene expression programs over time. We combine genomic approaches (e.g. CUT&RUN/ChIP, FAIRE/ATAC followed by high-throughput sequencing) with Drosophila genetics and transgenesis to address both of these questions.

Dowen, Jill
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology, Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Computational Biology, Genomics, Molecular Biology

My lab studies how genes function within the three-dimensional context of the nucleus to control development and prevent disease. We combine genomic approaches (ChIP-Seq, ChIA-PET) and genome editing tools (CRISPR) to study the epigenetic mechanisms by which transcriptional regulatory elements control gene expression in embryonic stem cells.  Our current research efforts are divided into 3 areas: 1) Mapping the folding pattern of the genome 2) Dynamics of three-dimensional genome organization as cells differentiate and 3) Functional analysis of altered chromosome structure in cancer and other diseases.

Stein, Jason
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Neuroscience

RESEARCH INTEREST
Bioinformatics, Computational Biology, Developmental Biology, Genomics, Neurobiology

We are a lab exploring how variations in the genome change the structure and development of the brain, and in doing so, create risk for neuropsychiatric illness. We study genetic effects on multiple aspects of the human brain, from macroscale phenotypes like gross human brain structure measured with MRI to molecular phenotypes like gene expression and chromatin accessibility measured with genome-sequencing technologies. We also use neural progenitor cells as a modifiable and high fidelity model system to understand how disease-associated variants affect brain development.

Shiau, Celia
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Genetics & Molecular Biology, Microbiology & Immunology, Neuroscience, Toxicology

RESEARCH INTEREST
Bioinformatics, Developmental Biology, Genetics, Immunology, Neurobiology, Systems Biology

The Shiau Lab is integrating in vivo imaging, genetics, genome editing, functional genomics, bioinformatics, and cell biology to uncover and understand innate immune functions in development and disease. From single genes to individual cells to whole organism, we are using the vertebrate zebrafish model to reveal and connect mechanisms at multiple scales. Of particular interest are 1) the genetic regulation of macrophage activation to prevent inappropriate inflammatory and autoimmune conditions, and 2) how different tissue-resident macrophages impact vertebrate development and homeostasis particularly in the brain and gut, such as the role of microglia in brain development and animal behavior.

Phanstiel, Doug
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Cell Biology & Physiology

RESEARCH INTEREST
Bioinformatics, Developmental Biology, Genomics, Molecular Biology, Systems Biology

It is estimated that less than 2% of the human genome codes for a functional protein.  Scattered throughout the rest of the genome are regulatory regions that can exert control over genes hundreds of thousands of base pairs away through the formation of DNA loops.  These loops regulate virtually all biological functions but play an especially critical role in cellular differentiation and human development. While this phenomenon has been known for thirty years or more, only a handful of such loops have been functionally characterized.  In our lab we use a combination of cutting edge genomics (in situ Hi-C, ATAC-seq, ChIP-seq), proteomics, genome editing (CRISPR/Cas), and bioinformatics to characterize and functionally interrogate dynamic DNA looping during monocyte differentiation.  We study this process both in both healthy cells and in the context of rheumatoid arthritis and our findings have broad implications for both cell biology as well as the diagnosis and treatment of human disease.