Research Interest: Bioinformatics
Name | PhD Program | Research Interest | Publications |
---|---|---|
Ramos, Silvia WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our research is focused on RNA-binding proteins and their physiopathological roles. An understudied aspect of human disease is gene regulation by modulation of mRNA function. In our research lab we investigate functional connections between the RNA-binding protein Zinc Finger Protein 36 Like-2 (ZFP36L2 or L2) and human diseases. L2 is a member of the Tris-Tetra-Proline or Zinc Finger Protein 36 (TTP/ZFP36) family of RNA-binding proteins that bind Adenine-uridine-Rich Elements (AREs) in the 3’ untranslated regions of target mRNAs. Upon binding, L2 accelerates mRNA target degradation and/or inhibits mRNA translation, ultimately decreasing the protein encoded by the L2-target mRNA. We have three particular goals:
|
Ferris, Marty WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
In the Ferris lab, we use genetically diverse mouse strains to better understand the role of genetic variation in immune responses to a variety of insults. We then study these variants mechanistically. We also develop genetic and genomic datasets and resources to better identify genetic features associated with these immunological differences. |
Love, Michael WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The Love Lab uses statistical models to infer biologically meaningful patterns in high-dimensional datasets, and develops open-source statistical software for the Bioconductor Project. At UNC-Chapel Hill, we often collaborate with groups in the Genetics Department and the Lineberger Comprehensive Cancer Center, studying how genetic variants relevant to diseases are associated with changes in molecular and cellular phenotypes. |
Rubinsteyn, Alex WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
I work on predicting the determinants of adaptive immune responses. Most of my work has focused on T-cell epitope prediction for mutant antigens derived from cancer. I have collaborated closely with clinical groups to translate this work in personalized cancer vaccine trials. More recently I have also been working on joint T-cell and B-cell prediction for viral pathogens. The technologies and techniques applied across all of my projects are at the intersection of computational immunology, genomics, and machine learning. |
Wirka, Robert WEBSITE |
PHD PROGRAM RESEARCH INTEREST |
Our lab uses human genetics to identify new mechanisms driving coronary artery disease (CAD). Starting with findings from genome-wide association studies (GWAS) of CAD, we identify the causal gene at a given locus, study the effect of this gene on cellular and vessel wall biology, and finally determine the molecular pathways by which this gene influences CAD risk. Within this framework, we use complex genetic mouse models and human vascular samples, single-cell transcriptomics/epigenomics and high-throughput CRISPR perturbations, as well as traditional molecular biology techniques. |
Rau, Christoph WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Heart failure is an increasingly prevalent cause of death world-wide, but the genetic and epigenetic underpinnings of this disease remain poorly understood. Our laboratory is interested in combining in vitro, in vivo and computational techniques to identify novel markers and predictors of a failing heart. In particular, we leverage mouse populations to perform systems-level analyses with a focus on co-expression network modeling and DNA methylation, following up in primary cell culture and CRISPR-engineered mouse lines to validate our candidate genes and identify potential molecular mechanisms of disease progression and amelioration. |
Raab, Jesse WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
We are interested in the links between epigenetics and gene regulation. Our primary focus is on understanding how changes to the composition of chromatin remodeling complexes are regulated, how their disruption affects their function, and contributes to disease. We focus on the SWI/SNF complex, which is mutated in 20% of all human tumors. This complex contains many variable subunits that can be assembled in combination to yield thousands of biochemically distinct complexes. We use a variety of computational and wet-lab techniques in cell culture and animal models to address these questions. |
Nguyen, Juliane WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The Nguyen lab develops the next generation of effective and safe biotherapeutics for life-threatening diseases such as cancer and myocardial infarction. We engineer novel immunomodulatory carriers based on genetically encoded materials and lipids that home to the site of disease, respond to changes in the microenvironment, and effectively deliver nucleic acids and drugs. |
Azcarate-Peril, M. Andrea WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
We are interested in determining the mechanisms involved in the beneficial modulation of the gut microbiota by prebiotics (functional foods that stimulate growth of gut native beneficial bacteria) and probiotics (live bacteria that benefit their host). Specifically, we aim to develop prebiotic and probiotic interventions as alternatives to traditional treatments for microbiota-health related conditions, and to advance microbiota-based health surveillance methods. |
Vincent, Benjamin WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The Vincent laboratory focuses on immunogenomics and systems approaches to understanding tumor immunobiology, with the goal of developing clinically relevant insights and new cancer immunotherapies. Our mission is to make discoveries that help cancer patients live longer and better lives, focusing on research areas where we feel our work will lead to cures. Our core values are scientific integrity, continual growth, communication, resource stewardship, and mutual respect. |