Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Merker, Jason
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pathobiology & Translational Science

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Genomics, Pharmacology, Translational Medicine

Our laboratory is focused on translating novel molecular biomarkers into clinical oncology practice, with the overarching goal of improving the care and survival of patients with cancer. Our group is highly collaborative and applies genomic, genetic, bioinformatic, informatic, statistical, and molecular approaches. Current projects in the laboratory include:

  1. Correlative genomic testing to support clinical trials
  2. Expanded clinical applications of RNA sequencing
  3. Development and application of cell-free circulating tumor nucleic acid assays
Ramos, Silvia
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics

RESEARCH INTEREST
Biochemistry, Bioinformatics, Molecular Biology, Pathology, Translational Medicine

Our research is focused on RNA-binding proteins and their physiopathological roles. An understudied aspect of human disease is gene regulation by modulation of mRNA function. In our research lab we investigate functional connections between the RNA-binding protein Zinc Finger Protein 36 Like-2 (ZFP36L2 or L2) and human diseases. L2 is a member of the Tris-Tetra-Proline or Zinc Finger Protein 36 (TTP/ZFP36) family of RNA-binding proteins that bind Adenine-uridine-Rich Elements (AREs) in the 3’ untranslated regions of target mRNAs. Upon binding, L2 accelerates mRNA target degradation and/or inhibits mRNA translation, ultimately decreasing the protein encoded by the L2-target mRNA.

We have three particular goals:

  • Determine new specific L2-mRNA targets involved in human diseases.
  • Determine the mechanism(s) by which L2 modulates these novel RNA targets.
  • Determine the physiological consequences of L2 ablation in specific cells types using mouse models and CRISPR/Cas9-mediated knockout system.
Ferris, Marty
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Bioinformatics, Computational Biology, Genetics, Genomics, Immunology, Pathogenesis & Infection, Systems Biology, Virology

In the Ferris lab, we use genetically diverse mouse strains to better understand the role of genetic variation in immune responses to a variety of insults. We then study these variants mechanistically. We also develop genetic and genomic datasets and resources to better identify genetic features associated with these immunological differences.

Love, Michael
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology

RESEARCH INTEREST
Bioinformatics, Computational Biology, Genetics, Genomics

The Love Lab uses statistical models to infer biologically meaningful patterns in high-dimensional datasets, and develops open-source statistical software for the Bioconductor Project. At UNC-Chapel Hill, we often collaborate with groups in the Genetics Department and the Lineberger Comprehensive Cancer Center, studying how genetic variants relevant to diseases are associated with changes in molecular and cellular phenotypes.

Rubinsteyn, Alex
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology

RESEARCH INTEREST
Bioinformatics, Computational Biology, Genomics, Immunology, Translational Medicine, Virology

I work on predicting the determinants of adaptive immune responses. Most of my work has focused on T-cell epitope prediction for mutant antigens derived from cancer. I have collaborated closely with clinical groups to translate this work in personalized cancer vaccine trials. More recently I have also been working on joint T-cell and B-cell prediction for viral pathogens. The technologies and techniques applied across all of my projects are at the intersection of computational immunology, genomics, and machine learning.

Wirka, Robert
WEBSITE
EMAIL

PHD PROGRAM
Cell Biology & Physiology

RESEARCH INTEREST
Bioinformatics, Cardiovascular Biology, Cell Biology, Genetics, Molecular Medicine

Our lab uses human genetics to identify new mechanisms driving coronary artery disease (CAD). Starting with findings from genome-wide association studies (GWAS) of CAD, we identify the causal gene at a given locus, study the effect of this gene on cellular and vessel wall biology, and finally determine the molecular pathways by which this gene influences CAD risk. Within this framework, we use complex genetic mouse models and human vascular samples, single-cell transcriptomics/epigenomics and high-throughput CRISPR perturbations, as well as traditional molecular biology techniques.

Rau, Christoph
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Cell Biology & Physiology, Genetics & Molecular Biology, Pathobiology & Translational Science

RESEARCH INTEREST
Bioinformatics, Cardiovascular Biology, Computational Biology, Genetics, Genomics, Molecular Biology, Systems Biology, Translational Medicine

Heart failure is an increasingly prevalent cause of death world-wide, but the genetic and epigenetic underpinnings of this disease remain poorly understood. Our laboratory is interested in combining in vitro, in vivo and computational techniques to identify novel markers and predictors of a failing heart. In particular, we leverage mouse populations to perform systems-level analyses with a focus on co-expression network modeling and DNA methylation, following up in primary cell culture and CRISPR-engineered mouse lines to validate our candidate genes and identify potential molecular mechanisms of disease progression and amelioration.

Raab, Jesse
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Computational Biology, Genetics, Genomics

We are interested in the links between epigenetics and gene regulation. Our primary focus is on understanding how changes to the composition of chromatin remodeling complexes are regulated, how their disruption affects their function, and contributes to disease. We focus on the SWI/SNF complex, which is mutated in 20% of all human tumors. This complex contains many variable subunits that can be assembled in combination to yield thousands of biochemically distinct complexes. We use a variety of computational and wet-lab techniques in cell culture and animal models to address these questions.

Nguyen, Juliane
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmaceutical Sciences

RESEARCH INTEREST
Biochemistry, Bioinformatics, Biomaterials, Drug Delivery, Immunology, Translational Medicine

The Nguyen lab develops the next generation of effective and safe biotherapeutics for life-threatening diseases such as cancer and myocardial infarction. We engineer novel immunomodulatory carriers based on genetically encoded materials and lipids that home to the site of disease, respond to changes in the microenvironment, and effectively deliver nucleic acids and drugs.

Azcarate-Peril, M. Andrea
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Nutrition

RESEARCH INTEREST
Bacteriology, Bioinformatics, Genomics, Molecular Biology, Systems Biology

We are interested in determining the mechanisms involved in the beneficial modulation of the gut microbiota by prebiotics (functional foods that stimulate growth of gut native beneficial bacteria) and probiotics (live bacteria that benefit their host). Specifically, we aim to develop prebiotic and probiotic interventions as alternatives to traditional treatments for microbiota-health related conditions, and to advance microbiota-based health surveillance methods.