Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Jones, Alan
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Pharmacology

RESEARCH INTEREST
Biochemistry, Bioinformatics, Cell Biology, Cell Signaling, Genetics, Pharmacology

The Jones lab is interested in heterotrimeric G protein-coupled signaling and uses genetic model systems to dissect signaling networks.  The G-protein complex serves as the nexus between cell surface receptors and various downstream enzymes that ultimately alter cell behavior. Metazoans have a hopelessly complex repertoire of G-protein complexes and cell surface receptors so we turned to the reference plant, Arabidopsis thaliana, and the yeast, Saccharomyces cerevisiae, as our models because these two organisms have only two potential G protein complexes and few cell surface receptors.  Their simplicity and the ability to genetically manipulate genes in these organisms make them powerful tools.  We use a variety of cell biology approaches, sophisticated imaging techniques, 3-D protein structure analyses, forward and reverse genetic approaches, and biochemistries.

Kash, Thomas
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Neuroscience, Pharmacology

RESEARCH INTEREST
Behavior, Biophysics, Neurobiology, Pharmacology, Physiology

Emotional behavior is regulated by a host of chemicals, including neurotransmitters and neuromodulators, acting on specific circuits within the brain. There is strong evidence for the existence of both endogenous stress and anti-stress systems. Chronic exposure to drugs of abuse and stress are hypothesized to modulate the relative balance of activity of these systems within key circuitry in the brain leading to dysregulated emotional behavior. One of the primary focuses of the Kash lab is to understand how chronic drugs of abuse and stress alter neuronal function, focusing on these stress and anti-stress systems in brain circuitry important for anxiety-like behavior. In particular, we are interested in defining alterations in synaptic function, modulation and plasticity using a combination of whole-cell patch-clamp physiology, biochemistry and mouse models.  Current projects are focused on the role of a unique population of dopamine neurons in alcoholism and anxiety.

Lawrence, David S
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Chemistry, Pharmaceutical Sciences, Pharmacology

RESEARCH INTEREST
Cancer Biology, Cell Biology, Cell Signaling, Chemical Biology, Molecular Medicine

Living cells have been referred to as the test tubes of the 21st century. New bioactive reagents developed in our lab are designed to function in cells and living organisms. We have prepared enzyme inhibitors, sensors of biochemical pathways, chemically-altered proteins, and activators of gene expression. In addition, many of these agents possess the unique attribute of remaining under our control even after they enter the biological system. In particular, our compounds are designed to be inert until activated by light, thereby allowing us to control their activity at any point in time.

Nicholas, Robert A.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology, Neuroscience, Pharmacology

RESEARCH INTEREST
Bacteriology, Biochemistry, Molecular Biology, Neurobiology, Pharmacology

My laboratory has two main interests: 1) Regulation of P2Y receptor signaling and trafficking in epithelial cells and platelets. Our laboratory investigates the cellular and molecular mechanisms by which P2Y receptors are differentially targeted to distinct membrane surfaces of polarized epithelial cells and the regulation of P2Y receptor signaling during ADP-promoted platelet aggregation. 2) Antibiotic resistance mechanisms. We investigate the mechanisms of antibiotic resistance in the pathogenic bacterium, Neisseria gonorrhoeae. Our laboratory investigates how acquisition of mutant alleles of existing genes confers resistance to penicillin and cephalosporins. We also study the biosynthesis of the gonococcal Type IV pilus and its contribution to antibiotic resistance.

Redinbo, Matt
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology, Chemistry, Microbiology & Immunology, Oral & Craniofacial Biomedicine, Pathobiology & Translational Science, Pharmaceutical Sciences, Pharmacology

RESEARCH INTEREST
Bacteriology, Biochemistry, Bioinformatics, Biophysics, Cancer Biology, Chemical Biology, Computational Biology, Drug Delivery, Drug Discovery, Metabolism, Microbiology, Molecular Biology, Molecular Medicine, Pharmacology, Plant Biology, Structural Biology, Systems Biology, Toxicology

We are interested in unraveling the molecular basis for human disease and discover new treatments focused on human and microbial targets. Our work extends from atomic-level studies using structural biology, through chemical biology efforts to identify new drugs, and into cellular, animal and clinical investigations. While we are currently focused on the gut microbiome, past work has examined how drugs are detected and degraded in humans, proteins designed to protect soldiers from chemical weapons, how antibiotic resistance spreads, and novel approaches to treat bacterial infections. The Redinbo Laboratory actively works to increase equity and inclusion in our lab, in science, and in the world. Our lab is centered around collaboration, open communication, and trust. We welcome and support anyone regardless of race, disability, gender identification, sexual orientation, age, financial background, or religion. We aim to: 1) Provide an inclusive, equitable, and encouraging work environment 2) Actively broaden representation in STEM to correct historical opportunity imbalances 3) Respect and support each individual’s needs, decisions, and career goals 4) Celebrate our differences and use them to discover new ways of thinking and to better our science and our community

Roth, Bryan
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience, Pharmacology

RESEARCH INTEREST
Chemical Biology, Neurobiology, Pharmacology

The ultimate goal of our studies is to discover novel ways to treat human disease using G-protein coupled receptors.

Samulski, Jude
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience, Pharmacology

RESEARCH INTEREST
Cancer Biology, Genetics, Molecular Biology, Virology

We are engaged in studying the molecular biology of the human parvovirus adeno-associated virus (AAV) with the intent to using this virus for developing a novel, safe, and efficient delivery system for human gene therapy.

Sondek, John
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology, Pharmacology

RESEARCH INTEREST
Biochemistry, Biophysics, Cancer Biology, Cell Signaling, Structural Biology

Our laboratory studies signal transduction systems controlled by heterotrimeric G proteins as well as Ras-related GTPases using a variety of biophysical, biochemical and cellular techniques. Member of the Molecular & Cellular Biophysics Training Program.

Yeh, Jen Jen
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Pharmacology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Computational Biology, Drug Discovery, Genomics, Molecular Biology, Molecular Medicine, Pharmacology, Translational Medicine

We are a translational cancer research lab. The overall goal of our research is to find therapeutic targets and biomarkers for patients with pancreatic cancer and to translate our results to the clinic. In order to accomplish this, we analyze patient tumors using a combination of genomics and proteomics to study the patient tumor and tumor microenvironment, identify and validate targets using forward and reverse genetic approaches in both patient-derived cell lines and mouse models. At the same time, we evaluate novel therapeutics for promising targets in mouse models in order to better predict clinical response in humans.

Zhang, Yanping
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Genetics & Molecular Biology, Pharmacology

RESEARCH INTEREST
Cancer Biology, Cell Biology, Developmental Biology, Genetics, Molecular Biology

We employ modern technologies – genomics, proteomics, mouse models, multi-color digital imaging, etc. to study cancer mechanisms. We have made major contributions to our understanding of the tumor suppressor ARF and p53 and the oncoprotein Mdm2.