Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Dominguez, Daniel
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Pharmacology

RESEARCH INTEREST
Cell Signaling, Computational Biology, Genetics, Molecular Biology, Pharmacology

The Dominguez lab studies how gene expression is controlled by proteins that bind RNA. RNA binding proteins control the way RNAs are transcribed, spliced, polyadenylated, exported, degraded, and translated. Areas of research include: (1) Altered RNA-protein interactions in cancer; (2) RNA binding by noncanonical domains; and (3) Cell signaling and RNA processing.

Legant, Wesley R.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmacology

RESEARCH INTEREST
Biomaterials, Cancer Biology, Cell Biology, Cell Signaling, Computational Biology

Life is animate and three-dimensional.  Our lab develops tools to better understand living specimens at single molecule, cellular, and tissue level length scales.  Our current efforts comprise three synergistic research areas: 1) development and application of novel fluorescent imaging modalities including: super resolution, light sheet, and adaptive optical microscopy 2) investigation of how mechanical forces and cytoskeletal dynamics drive cancer cell migration through complex three-dimensional environments, and 3) generation of microfabricated platforms to precisely control the cellular microenvironment for tissue engineering and drug screening.

Brown, Nicholas
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmacology

RESEARCH INTEREST
Biochemistry, Biophysics, Cancer Biology, Pharmacology, Structural Biology

Our research group uses several biochemical and structural techniques (e.g. enzyme assays, X-ray crystallography, and cryo-EM) to understand how molecular machines drive the cell cycle. Dysregulation of these enzymes results in numerous cancer types.

Herman, Melissa
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience, Pharmacology

RESEARCH INTEREST
Neurobiology, Pharmacology, Physiology, Systems Biology

My research interests involve the structure of inhibitory neuronal networks and how these networks change to produce adverse behavioral outcomes. My main interest is how the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) regulates neuronal networks via both synaptic and extrasynaptic forms of inhibition and how alterations in inhibitory networks contribute to clinical conditions such as alcohol use disorder, nicotine, addiction, or stress. My work has focused primarily on three brain regions: the nucleus tractus solitaries (NTS), central and basolateral amygdala, and ventral tegmental area. In each of these areas I have identified local inhibitory networks that control overall excitability and that are dysregulated by exposure to acute and or chronic exposure to alcohol or nicotine.

Hahn, Klaus
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Cell Biology & Physiology, Neuroscience, Pharmacology

RESEARCH INTEREST
Biochemistry, Biophysics, Cell Biology, Cell Signaling, Chemical Biology, Computational Biology, Systems Biology

Dynamic control of signaling networks in living cells; Rho family and MAPK networks in motility and network plasticity; new tools to study protein activity in living cells (i.e., biosensors, protein photomanipulation, microscopy). Member of the Molecular & Cellular Biophysics Training Program and the Medicinal Chemistry Program.

Graves, Lee M.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmacology

RESEARCH INTEREST
Biochemistry, Cell Biology, Molecular Biology, Pharmacology, Physiology

Our lab is studying the role of mitogen and stress-activated protein kinases to regulate key aspects of cell metabolism. We are also studying signalling by tyrosine kinases in response to toxicological agents or cell stress.

Emanuele, Michael
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Genetics & Molecular Biology, Pharmacology

RESEARCH INTEREST
Biochemistry, Cancer Biology, Cell Biology, Molecular Biology, Systems Biology

Our lab applies cutting edge genetic and proteomic technologies to unravel dynamic signaling networks involved in cell proliferation, genome stability and cancer. These powerful technologies are used to systematically interrogate the ubiquitin proteasome system (UPS), and allow us to gain a systems level understanding of the cell at unparalleled depth. We are focused on UPS signaling in cell cycle progression and genome stability, since these pathways are universally perturbed in cancer.

Elston, Timothy
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Pharmacology

RESEARCH INTEREST
Biophysics, Computational Biology, Pharmacology, Systems Biology

The Elston lab is interested in understanding the dynamics of complex biological systems, and developing reliable mathematical models that capture the essential components of these systems. The projects in the lab encompass a wide variety of biological phenomena including signaling through MAPK pathways, noise in gene regulatory networks, airway surface volume regulation, and understanding energy transduction in motor proteins. A major focus of our research is understanding the role of molecular level noise in cellular and molecular processes. We have developed the software tool BioNetS to accurately and efficiently simulate stochastic models of biochemical networks

Duncan, Alex
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Pharmacology

RESEARCH INTEREST
Bacteriology, Biochemistry, Cell Signaling, Immunology, Pathogenesis & Infection

My lab studies a recently identified pathogen-sensing signaling complex known as the inflammasome. The inflammasome is responsible for the proteolytic maturation of some cytokines and induces a novel necrotic cell death program. We have found that critical virulence factors from certain pathogens are able to activate NLRP3-mediated signaling, suggesting these pathogens may exploit this host signaling system in order to promote infections.  Our lab has active research projects in several areas relating to inflammasome signaling ranging from understanding basic molecular mechanisms of the pathway to studying the role of the system in animal models of infectious diseases.

Dohlman, Henrik
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology, Pharmacology

RESEARCH INTEREST
Biochemistry, Cell Signaling, Genomics, Pharmacology, Systems Biology

We use an integrated approach (genomics, proteomics, computational biology) to study the molecular mechanisms of hormone and drug desensitization. Our current focus is on RGS proteins (regulators of G protein signaling) and post-translational modifications including ubiquitination and phosphorylation.