Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Meeker, Rick
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Cell Biology, Neurobiology, Pathogenesis & Infection, Pharmacology, Virology

Dr. Meeker’s research is focused on the mechanisms of HIV neuropathogenesis and the development of therapeutic strategies for the treatment of neuroinflammation. Inflammatory changes within the brain caused by the viral infection initiate a toxic cascade that disrupts normal neural function and can eventually lead to neuronal death. To explore the mechanisms responsible for this damage, we investigate changes in calcium homeostasis, glutamate receptor function and inflammatory responses in primary neuronal, microglial and macrophage cultures. New therapeutic approaches targeted to signal transduction pathways and calcium regulation that protect the neurons and reduce inflammation are under investigation.

Nicholas, Robert A.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Microbiology & Immunology, Neuroscience, Pharmacology

RESEARCH INTEREST
Bacteriology, Biochemistry, Molecular Biology, Neurobiology, Pharmacology

My laboratory has two main interests: 1) Regulation of P2Y receptor signaling and trafficking in epithelial cells and platelets. Our laboratory investigates the cellular and molecular mechanisms by which P2Y receptors are differentially targeted to distinct membrane surfaces of polarized epithelial cells and the regulation of P2Y receptor signaling during ADP-promoted platelet aggregation. 2) Antibiotic resistance mechanisms. We investigate the mechanisms of antibiotic resistance in the pathogenic bacterium, Neisseria gonorrhoeae. Our laboratory investigates how acquisition of mutant alleles of existing genes confers resistance to penicillin and cephalosporins. We also study the biosynthesis of the gonococcal Type IV pilus and its contribution to antibiotic resistance.

Peifer, Mark
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Genetics & Molecular Biology, Neuroscience

RESEARCH INTEREST
Biochemistry, Cancer Biology, Cell Biology, Cell Signaling, Developmental Biology, Genetics

Cell adhesion, cytoskeletal regulation and Wnt signaling in development and cancer
The Peifer lab works at the interface between cell, developmental, and cancer biology, focusing on the epithelial tissues that form the basic architectural unit of our bodies and of those of other animals. We explore how the machinery mediating cell adhesion, cytoskeletal regulation and Wnt signaling regulates cell fate and tissue architecture in development and disease. We take a multidisciplinary approach, spanning genetics, cutting edge cell biology including super-resolution microscopy, biochemistry and computational approaches. We use the fruit fly Drosophila as an animal model and combine that with work in cultured normal and colorectal cancer cells. Possible thesis projects include exploring how connections between cell junctions and the cytoskeleton are remodeled to allow cells to change shape and move without tearing tissues apart or exploring how the tumor suppressor protein APC assembles a multi-protein machine that negatively regulates Wnt signaling and how this goes wrong in colorectal tumors. I am a hands on-mentor with an open-door policy and my office is in the lab. I value and advocate for diversity. Our lab has a strong record of training PhD students and postdocs who move on to success in diverse science-related careers. Our lab is funded by a long-standing NIH grant that extends to July 2021, and just received a good score for renewal. To learn more about or research, our recent publications, our team and our alumni check out the lab website at: https://proxy.qualtrics.com/proxy/?url=http%3A%2F%2Fpeiferlab.web.unc.edu%2F&token=1rPNJvHEEfhAAiwkSviuOG0Fg8%2ByN3Q3GMob1A2GJwM%3D

Philpot, Ben
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Cell Biology & Physiology, Neuroscience

RESEARCH INTEREST
Behavior, Molecular Biology, Neurobiology, Physiology

My lab is driven to understand the neuronal pathologies underlying neurodevelopmental disorders, and to use this information to identify novel therapeutics.  We focus our research on monogenic autism spectrum disorders, including Angelman, Rett, and Pitt-Hopkins syndromes.  We employ a diverse number of techniques including: electrophysiology, molecular biology, biochemistry, mouse engineering, and in vivo imaging.

Robinson, Donita
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Behavior, Neurobiology, Pharmacology, Physiology, Systems Biology

The Robinson lab currently explores the neurodynamics of reinforcement pathways in the brain by using state-of-the-art, in vivo recording techniques in freely moving rats. Our goal is to understand the interplay of mesostriatal, mesocortical and corticostriatal circuits that underlie action selection, both in the context of normal development and function, and in the context of psychiatric disorders that involve maladaptive behavior, such as alcohol use disorder, adolescent vulnerability to drug use and addiction, cocaine-induced maternal neglect and binge-eating disorders.

Roth, Bryan
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience, Pharmacology

RESEARCH INTEREST
Chemical Biology, Neurobiology, Pharmacology

The ultimate goal of our studies is to discover novel ways to treat human disease using G-protein coupled receptors.

Samulski, Jude
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience, Pharmacology

RESEARCH INTEREST
Cancer Biology, Genetics, Molecular Biology, Virology

We are engaged in studying the molecular biology of the human parvovirus adeno-associated virus (AAV) with the intent to using this virus for developing a novel, safe, and efficient delivery system for human gene therapy.

Shih, Yen-Yu Ian
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Neurobiology, Physiology, Structural Biology, Systems Biology, Translational Medicine

Dr. Shih is the Director of Small Animal Magnetic Resonance Imaging (MRI) at the Biomedical Research Imaging Center. His lab has implemented multi-model MRI techniques at high magnetic field to measure cerebral blood oxygenation, blood flow, blood volume, and oxygen metabolism changes in preclinical animal models. Dr. Shih’s lab is also developing simultaneous functional MRI (fMRI) and electrophysiology recording techniques at high spatial resolution to elucidate the pathophysiological mechanisms of neurovascular diseases. They will apply these techniques to (i) explore/validate functional connectivity network and neurovascular coupling in the rodent brain, (ii) study tissue characteristics after stroke, and (iii) investigate deep brain electrical stimulation, optogenetic stimulation, and pharmacogenetic stimulation in normal and Parkinsonian animal models.

Taylor, Anne Marion
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Cell Biology, Drug Discovery, Neurobiology

Local mRNA translation is critical for axon regeneration, synapse formation, and synaptic plasticity. While much of research has focused on local translation in dendrites and in peripheral axons, less is known about local translation in smaller diameter central axons due to the technical difficulty of accessing them. We developed microfluidic technology to allow access to axons, as well as nascent boutons and fully functional boutons. We identified multiple transcripts that are targeted to cortical and hippocampal axons in rat (Taylor et al. J Neurosci 2009). Importantly, this work countered the prevailing view that local mRNA translation does not occur in mature axons. We are actively investigating transcripts in axons that may play a role in establishing proper synaptic connections. We are also using our technology to identify transcripts targeted to axons and boutons in human neurons. These studies are a critical step towards the identification of key genes and signaling molecules during synapse development, axonal regeneration, and proper circuit function.

Thiele, Todd
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Neuroscience

RESEARCH INTEREST
Neurobiology, Pharmacology, Physiology

My primary research interests are directed at the neurobiology of alcoholism. To study the central mechanisms involved with neurobiological responses to ethanol, I use both genetic and pharmacological manipulations. There are many factors that may cause an individual to progress from a moderate or social drinker to an alcoholic. In addition to environmental influences, there is growing evidence in both the human and animal literature that genetic factors contribute to alcohol abuse. Furthermore, the risk for developing alcoholism is likely not associated with a single gene, but rather with multiple genes that interact with environmental factors to determine susceptibility for uncontrolled drinking. Some of the questions that my laboratory is currently addressing are: 1) Does central neuropeptide Y (NPY) signaling modulate neurobiological responses to ethanol and ethanol consumption, 2) Do melanocortin peptides modulate ethanol intake? and 3) Does cAMP-dependent kinase (PKA) play a role in voluntary ethanol consumption and/or other effects produced by ethanol?