PhD Program: Cell Biology & Physiology
Name | PhD Program | Research Interest | Publications |
---|---|---|
Matera, Greg WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The research in our laboratory focuses on epigenetics and RNA processing. In particular, we are interested in the roles of small ribonucleoproteins (RNPs) and histone post-translational modifications in the regulation of eukaryotic gene expression. There are two main projects in the lab. (1) We have created a comprehensive genetic platform for histone gene replacement that — for the first time in any multicellular eukaryote — allows us to directly determine the extent to which histone post-translational modifications contribute to cell growth and development. (2) We study an RNP assembly factor (called Survival Motor Neuron, SMN) and its role in neuromuscular development and a genetic disease called Spinal Muscular Atrophy (SMA). Current work is aimed at a molecular understanding of SMN’s function in spliceosomal snRNP assembly and its dysfunction in SMA pathophysiology. |
Neher, Saskia WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our lab seeks to better understand the maturation and regulation of a group of human lipases. We aim to uncover how these lipases properly fold and exit the ER, and how their activity is subsequently regulated. We study the membrane-bound and secreted proteins that play a role in lipase regulation. Our research can potentially impact human health as biochemical deficiencies in lipase activity can cause hypertriglyceridemia and associated disorders, such as diabetes and atherosclerosis. We are an interdisciplinary lab and aim to address these questions using a variety of techniques, including membrane protein biochemistry, enzymology, and structural and molecular biology. |
Peifer, Mark WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Cell adhesion, cytoskeletal regulation and Wnt signaling in development and cancer |
Philpot, Ben WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My lab is driven to understand the neuronal pathologies underlying neurodevelopmental disorders, and to use this information to identify novel therapeutics. We focus our research on monogenic autism spectrum disorders, including Angelman, Rett, and Pitt-Hopkins syndromes. We employ a diverse number of techniques including: electrophysiology, molecular biology, biochemistry, mouse engineering, and in vivo imaging. |
Qian, Li WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our laboratory is interested in developing innovative approaches to regenerate or repair an injured heart. Our goal is to understand the molecular basis of cardiomyocyte specification and maturation and apply this knowledge to improve efficiency and clinical applicability of cellular reprogramming in heart disease. To achieve these goals, we utilize in vivo modeling of cardiac disease in the mouse, including myocardial infarction (MI), cardiac hypertrophy, chronic heart failure and congenital heart disease (CHD). In addition, we take advantage of traditional mouse genetics, cell and molecular biology, biochemistry and newly developed reprogramming technologies (iPSC and iCM) to investigate the fundamental events underlying the progression of various cardiovascular diseases as well as to discover the basic mechanisms of cell reprogramming. |
Randell, Scott WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My laboratory research is focused on basic cell biology questions as they apply to clinical lung disease problems. Our main work recently has been contributing to the Cystic Fibrosis (CF) Foundtation Stem Cell Consortium, with a focus on developing cell and gene editing therapies for CF. I contribute to UNC team science efforts on cystic fibrosis, aerodigestive cancers, emerging infectious diseases and inhalation toxicology hazards. I direct a highly respected tissue procurement and cell culture Core providing primary human lung cells and other resources locally, nationally and internationally. I co-direct the Respiratory Block in the UNC Translational Educational Curriculum for medical students and also teach in several graduate level courses. |
Rogers, Steve WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The research in our lab is centered on understanding the mechanisms and principles of movement at the cellular level. Cytoskeletal filaments – composed of actin and microtubules – serve as a structural scaffolding that gives cells the ability to divide, crawl, and change their shape. Our lab uses a combination of cell biological, biochemical, functional genomic, and high resolution imaging techniques to study cytoskeletal dynamics and how they contribute to cellular motion. |
Taylor, Joan M. WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The goal of our research is to identify signaling mechanisms that contribute to normal and pathophysiological cell growth in the cardiovascular system. We study cardiac and vascular development as well as heart failure and atherosclerosis. |
Weiss, Ellen WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The vertebrate retina is an extension of the central nervous system that controls visual signaling and circadian rhythm. Our laboratory is interested in how the retina adapts to changing light intensities in the natural environment. We are presently studying the regulation of 2 G protein-coupled receptor kinases, GRK1 and GRK7, that participate in signal termination in the light-detecting cells of the retina, the rods and cones. Signal termination helps these cells recover from light exposure and adapt to continually changing light intensities. Recently, we determined that GRK1 and GRK7 are phosphorylated by cAMP-dependent protein kinase (PKA). Since cAMP levels are regulated by light in the retina, phosphorylation by PKA may be important in recovery and adaptation. Biochemical and molecular approaches are used in 2 model organisms, mouse and zebrafish, to address the role of PKA in retina function. Keywords: cAMP, cone, G protein-coupled receptor, GPCR, GRK, kinase, neurobiology, opsin, PKA, retina, rhodopsin rod, second messenger, signal transduction, vision. |
Yeh, Jen Jen WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
We are a translational cancer research lab. The overall goal of our research is to find therapeutic targets and biomarkers for patients with pancreatic cancer and to translate our results to the clinic. In order to accomplish this, we analyze patient tumors using a combination of genomics and proteomics to study the patient tumor and tumor microenvironment, identify and validate targets using forward and reverse genetic approaches in both patient-derived cell lines and mouse models. At the same time, we evaluate novel therapeutics for promising targets in mouse models in order to better predict clinical response in humans. |