PhD Program: Cell Biology & Physiology
Name | PhD Program | Research Interest | Publications |
---|---|---|
Taylor, Joan M. WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The goal of our research is to identify signaling mechanisms that contribute to normal and pathophysiological cell growth in the cardiovascular system. We study cardiac and vascular development as well as heart failure and atherosclerosis. |
Ting, Jenny WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Topics include gene discovery, genomics/proteomics, gene transcription, signal transduction, molecular immunology. Disease relevant issues include infectious diseases, autoimmune and demyelinating disorders, cancer chemotherapy, gene linkage. |
Weiss, Ellen WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The vertebrate retina is an extension of the central nervous system that controls visual signaling and circadian rhythm. Our laboratory is interested in how the retina adapts to changing light intensities in the natural environment. We are presently studying the regulation of 2 G protein-coupled receptor kinases, GRK1 and GRK7, that participate in signal termination in the light-detecting cells of the retina, the rods and cones. Signal termination helps these cells recover from light exposure and adapt to continually changing light intensities. Recently, we determined that GRK1 and GRK7 are phosphorylated by cAMP-dependent protein kinase (PKA). Since cAMP levels are regulated by light in the retina, phosphorylation by PKA may be important in recovery and adaptation. Biochemical and molecular approaches are used in 2 model organisms, mouse and zebrafish, to address the role of PKA in retina function. Keywords: cAMP, cone, G protein-coupled receptor, GPCR, GRK, kinase, neurobiology, opsin, PKA, retina, rhodopsin rod, second messenger, signal transduction, vision. |
Yeh, Jen Jen WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
We are a translational cancer research lab. The overall goal of our research is to find therapeutic targets and biomarkers for patients with pancreatic cancer and to translate our results to the clinic. In order to accomplish this, we analyze patient tumors using a combination of genomics and proteomics to study the patient tumor and tumor microenvironment, identify and validate targets using forward and reverse genetic approaches in both patient-derived cell lines and mouse models. At the same time, we evaluate novel therapeutics for promising targets in mouse models in order to better predict clinical response in humans. |
Zylka, Mark J. WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our research is focused on two general areas: 1. Autism and 2. Pain. Our autism research is focused on topoisomerases and other transcriptional regulators that were recently linked to autism. We use genome-wide approaches to better understand how these transcriptional regulators affect gene expression in developing and adult neurons (such as RNA-seq, ChIP-seq, Crispr/Cas9 for knocking out genes). We also assess how synaptic function is affected, using calcium imaging and electrophysiology. In addition, we are performing a large RNA-seq screen to identify chemicals and drugs that increase risk for autism. / / Our pain research is focused on lipid kinases that regulate pain signaling and sensitization. This includes work with cultured dorsal root ganglia (DRG) neurons, molecular biology and behavioral models of chronic pain. We also are working on drug discovery projects, with an eye towards developing new therapeutics for chronic pain. |
Cohen, Todd WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My research aims to uncover the molecular aspects of protein aggregation diseases (also called PAD) which include neurodegenerative diseases (such as Alzheimer’s disease and Amyotrophic Lateral Sclerosis), myofibrillar myopathies (such as muscular dystrophies), as well as the formation of age-related cataracts. Although very distinct, these disorders share a common underlying pathogenic mechanism. Using a combination of biochemistry and in vitro approaches, cell biology, and primary cells / transgenic mouse models, we will investigate the post-translational modifications (PTMs) that drive these disease processes. Ultimately, this research will provide a platform for future drug discovery efforts against these devastating diseases. |
Maddox, Amy Shaub WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
My research philosophy is summed up by a quote from Nobelist Albert Szent-Gyorgyi: “Discovery is to see what everybody has seen and to think what nobody has thought.” My lab studies the molecular and physical mechanisms of cell shape change during cytokinesis and tissue biogenesis during development. Specifically, we are defining how cells ensure proper alignment and sliding of cytoskeletal filaments, and determining the shape of the cell throughout division. To do so, we combine developmental biology, cell biology, biochemistry, and quantitative image analysis. |
Pecot, Chad Victor WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Pecot Lab: Therapeutic RNAi to Teach Cancer how to “Heal” and Block Metastatic Biology Synopsis: The Pecot lab is looking for eager, self-motivated students to join us in tackling the biggest problem in oncology, metastases. An estimated 90% of cancer patients die because of metastases. However, the fundamental underpinnings of what enables metastases to occur are poorly understood. The Pecot lab takes a 3-pronged approach to tackling this problem: 1) By studying the tumor microenvironment (TME), several projects are studying how cancers can be taught to “heal” themselves, 2) By studying how cancers manipulate non-coding RNAs (micro-RNAs, circle RNAs, snoRNAs, etc) to promote their metastatic spread, and 3) We are investigating several ways to develop and implement therapeutic RNA interference (RNAi) to tackle cancer-relevant pathways that are traditionally regarded as “undruggable”. Students joining the lab will be immersed in the development of novel metastatic models, modeling and studying the TME both in vitro and in vivo, using bioinformatic approaches to uncover mechanistic “roots”, and implementation of therapeutic approaches |
Song, Juan WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
Our primary research interest is to identify the mechanisms that regulate neural circuit organization and function at distinct stages of adult neurogenesis, and to understand how circuit-level information-processing properties are remodeled by the integration of new neurons into existing circuits and how disregulation of this process may contribute to various neurological and mental disorders. Our long-range goals are to translate general principles governing neural network function into directions relevant for understanding neurological and psychiatric diseases. We are addressing these questions using a combination of cutting-edge technologies and approaches, including optogenetics, high-resolution microscopy, in vitro and in vivo electrophysiology, genetic lineage tracing and molecular biology. |
Ostrowski, Lawrence E WEBSITE PUBLICATIONS |
PHD PROGRAM RESEARCH INTEREST |
The overall focus of research in my laboratory is to improve the diagnosis and treatment of airway diseases, especially those that result from impaired mucociliary clearance. In particular, our efforts focus on the diseases cystic fibrosis and primary ciliary dyskinesia, two diseases caused by genetic mutations that impair mucociliary clearance and lead to recurrent lung infections. The work in our laboratory ranges from basic studies of ciliated cells and the proteins that make up the complex structure of the motile cilia, to translational studies of new drugs and gene therapy vectors. We use a number of model systems, including traditional and inducible animal models, in vitro culture of differentiated mouse and human airway epithelial cells, and direct studies of human tissues. We also use a wide range of experimental techniques, from studies of RNA expression and proteomics to measuring ciliary activity in cultured cells and whole animals. |