Skip to main content
NameEmailPhD ProgramResearch InterestPublications
Vision, Todd
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Biology

RESEARCH INTEREST
Bioinformatics, Computational Biology, Evolutionary Biology, Genomics, Plant Biology

Our lab uses computational and molecular tools to study the evolution of genome organization, primarily in the flowering plants. Areas of
investigation include the origin and consequences of differences in gene order within populations and between species, the evolutionary and functional diversification of gene families (phytome.org), and the application of genomics to evolutionary model organisms (mimulusevolution.org).  We also are involved in a number of cyberinfrastructure initiatives through the National Evolutionary Synthesis Center (nescent.org), including work on digital scientific libraries (datadryad.org), open bioinformatic software development (e.g. gmod.org) and the application of semantic web technologies to biological data integration (phenoscape.org).

Willett, Christopher
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology

RESEARCH INTEREST
Ecology, Evolutionary Biology, Genetics, Organismal Biology, Physiology

My lab concentrates on studying the molecular genetic basis of the evolutionary processes of adaptation and speciation. The questions we ask are what are the sequence changes that lead to variation between species and diversity within species, and what can these changes tell us about the processes that lead to their evolution. We use a number of different techniques to answer these questions, including molecular biology, sequence analyses (i.e. population genetics and molecular evolution techniques), physiological studies, and examinations of whole-organism fitness. Currently work in the lab has focused on a intertidal copepod species that is an excellent model for the initial stages of speciation (and also provides opportunities to study how populations of this species adapt to their physical environment).

Yeh, Elaine
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology

RESEARCH INTEREST
Biophysics, Cancer Biology, Cell Biology, Genetics

The site of microtubule attachment to the chromosome is the kinetochore, a complex of over 60 proteins assembled at a specific site on the chromosome, the centromere. Almost every kinetochore protein identified in yeast is conserved through humans and the organization of the kinetochore in yeast may serve as the fundamental unit of attachment. More recently we have become interested in the role of two different classes of ATP binding proteins, cohesions (Smc3, Scc1) and chromatin remodeling factors (Cac1, Hir1, Rdh54) in the structural organization of the kinetochore and their contribution to the fidelity of chromosome segregation.

Maddox, Amy Shaub
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Biology, Cell Biology & Physiology, Genetics & Molecular Biology

RESEARCH INTEREST
Biochemistry, Bioinformatics, Biophysics, Cell Biology, Developmental Biology

My research philosophy is summed up by a quote from Nobelist Albert Szent-Gyorgyi: “Discovery is to see what everybody has seen and to think what nobody has thought.” My lab studies the molecular and physical mechanisms of cell shape change during cytokinesis and tissue biogenesis during development. Specifically, we are defining how cells ensure proper alignment and sliding of cytoskeletal filaments, and determining the shape of the cell throughout division. To do so, we combine developmental biology, cell biology, biochemistry, and quantitative image analysis.

Maddox, Paul S.
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Biophysics, Cell Biology

My research program is centered on understanding fundamental aspects of cell division. During cell division, complex DNA-protein interactions transform diffuse interphase chromatin into discrete mitotic chromosomes, condensing them several thousand fold to facilitate spatial segregation of sister chromatids. Concomitantly, kinetochores form specifically at centromere regions of chromosomes and regulate force-producing interactions with microtubules. While these processes are absolutely required for genomic stability, the in vivo mechanisms of chromosome and kinetochore assembly remain unsolved problems in biology. I investigate 1) the spatiotemporal regulation of mitotic chromosome assembly, and 2) the molecular basis of centromere specification. To do so, I will combine biochemical approaches with high-resolution light microscopy of live cells, whole organisms, and in vitro systems.

McKay, Daniel
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Bioinformatics & Computational Biology, Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Developmental Biology, Genetics, Genomics, Molecular Biology

Research in the lab focuses on how a single genome gives rise to a variety of cell types and body parts during development. We use Drosophila as an experimental system to investigate (1) how transcription factors access DNA to regulate complex patterns of gene expression, and (2) how post-translational modification of histones contributes to maintenance of gene expression programs over time. We combine genomic approaches (e.g. CUT&RUN/ChIP, FAIRE/ATAC followed by high-throughput sequencing) with Drosophila genetics and transgenesis to address both of these questions.

Nimchuk, Zachary
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology

RESEARCH INTEREST
Cell Biology, Cell Signaling, Developmental Biology, Genetics, Molecular Biology, Plant Biology

Understanding how cells communicate and co-ordinate during development is a universal question in biology. My lab studies the cell to cell signaling systems that control plant stem cell production.  Plants contain discrete populations of self-renewing stem cells that give rise to the diverse differentiated cell types found throughout the plant.  Stem cell function is therefore ultimately responsible for the aesthetic and economic benefits plants provide us. Stem cell maintenance is controlled by overlapping receptor kinases that sense peptide ligands. Receptor kinase pathways also integrate with hormone signaling in a complex manner to modulate stem cell function.  My lab uses multiple approaches to dissect these networks including; genetics, genomics, CRISPR/Cas9 genome editing, live tissue imaging, and cell biological and biochemical methods.  This integrated approach allows us to gain an understanding of the different levels at which regulatory networks act and how they contribute to changes in form and function during evolution.

Dowen, Jill
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biochemistry & Biophysics, Bioinformatics & Computational Biology, Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Bioinformatics, Cancer Biology, Computational Biology, Genomics, Molecular Biology

My lab studies how genes function within the three-dimensional context of the nucleus to control development and prevent disease. We combine genomic approaches (ChIP-Seq, ChIA-PET) and genome editing tools (CRISPR) to study the epigenetic mechanisms by which transcriptional regulatory elements control gene expression in embryonic stem cells.  Our current research efforts are divided into 3 areas: 1) Mapping the folding pattern of the genome 2) Dynamics of three-dimensional genome organization as cells differentiate and 3) Functional analysis of altered chromosome structure in cancer and other diseases.

Shiau, Celia
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Cell Biology & Physiology, Genetics & Molecular Biology, Microbiology & Immunology, Neuroscience, Toxicology

RESEARCH INTEREST
Bioinformatics, Developmental Biology, Genetics, Immunology, Neurobiology, Systems Biology

The Shiau Lab is integrating in vivo imaging, genetics, genome editing, functional genomics, bioinformatics, and cell biology to uncover and understand innate immune functions in development and disease. From single genes to individual cells to whole organism, we are using the vertebrate zebrafish model to reveal and connect mechanisms at multiple scales. Of particular interest are 1) the genetic regulation of macrophage activation to prevent inappropriate inflammatory and autoimmune conditions, and 2) how different tissue-resident macrophages impact vertebrate development and homeostasis particularly in the brain and gut, such as the role of microglia in brain development and animal behavior.

Ahmed, Shawn
WEBSITE
EMAIL
PUBLICATIONS

PHD PROGRAM
Biology, Genetics & Molecular Biology

RESEARCH INTEREST
Cancer Biology, Developmental Biology, Genetics, Genomics, Molecular Biology

Our research group utilizes the nematode C. elegans to investigate germ cell immortality: mechanisms that allow germ cells remain eternally youthful as they are transmitted from one generation to the next. We also study how telomerase functions at chromosome termini, as well as the consequences of telomere dysfunction.