Skip to main content

A unifying goal of my research is the use of chemistry as a tool to illuminate human biology. For over two decades I have led programs to develop potent cell active chemical probes to identify and study the biological function of their target proteins. Starting in 1992 with the orphan nuclear receptors, my lab developed chemical probes to uncover the roles of PPAR, PPAR, LXR, FXR, CAR, and PXR in human physiology. The release of our chemical probes into the public domain supported research across the global scientific community and resulted in multiple drug candidates to treat diseases of human metabolism entering clinical development. I am co-discoverer of the FXR agonist obeticholic acid, which was approved by the FDA in 2016 as a drug for the treatment of Primary Biliary Cholangitis.

In 2007, I started a collaboration with the Structural Genomics Consortium (SGC) to discover chemical probes for the enzymes and reader domains involved in epigenetic regulation. Together, we built a consortium with support from public funders and eight pharmaceutical companies that has released over 40 high quality chemical probes into the public domain. We demonstrated that the bromodomain family of acetyl lysine reader domains were highly tractable targets for drug discovery, which led to the development of BRD4 inhibitors for the treatment of various rare cancers.

In 2015, I established the first US site of the SGC at the University of North Carolina in Chapel Hill to expand the footprint of open science in US academia. I have assembled a team at SGC-UNC to create chemical tools for understudied (‘dark’) kinases, identify inhibitors of molecular targets that cause rare diseases, and develop chemical probes for proteins associated with neurodegenerative diseases. With support from the NIH Illuminating the Druggable Genome program we assembled a Kinase Chemogenomic Set (KCGS): the largest, highly annotated and publicly available collection of small molecule kinase inhibitors. We used KCGS to identify kinases whose inhibition prevents replication of coronaviruses including SARS-CoV-2. Medicinal chemists at the SGC-UNC are also developing chemical probes within the Med Chem Core of the NIA Target Enablement to Accelerate Therapy Development for Alzheimer’s Disease (TREAT-AD) program at UNC.