Skip to main content

The broad aim of research in the Fenton Laboratory is to develop and evaluate synthetic drug delivery platforms to treat neurodegenerative disorders in the brain using RNA therapeutics. RNA therapeutics represent a particularly promising class of therapeutics for neurodegenerative management given their ability to tune levels of specific protein expression in living systems. For example, protein downregulation can be achieved by administering short interfering RNAs (siRNAs); alternatively, proteins can be upregulated by messenger RNA (mRNA) administration. Despite this promise, fewer than 0.05% of the world’s clinically approved drugs are RNA therapeutics, and their translation to neurodegenerative disorders in the brain warrants further study at the fundamental and clinical levels.

To address these challenges, our group focuses on the discovery and development of molecular carriers and technology platforms to improve the targeting, safety, and efficacy of RNA drugs within target cells. Specifically, our group leverages an interdisciplinary approach to develop lipid nanoparticles (LNP) as well as soft matter hydrogel platforms that can serve as carrier systems and/or drug delivery models for RNA drugs. Further, our group also explores the development of technological platforms to further expand the potential of RNA drugs within resource limited settings. Lastly, given that mRNA drugs can be engineered to encode for virtually any polypeptide or protein based antigen, our group also aims to leverage our platformable LNP technologies for the study and prevention of cancers and infectious disease. In undertaking such an approach, the goal of our research is to equip students with fundamental skillsets for the development of next generation drugs while simultaneously developing clinically-relevant carrier platforms and technologies for the study, prevention, and treatment of human disease.