Skip to main content

The long-term goal of my research is to incorporate ‘omic (genomic, epigenomic, proteomic, etc.) measurements into environmental human health hazard identification, prioritization and risk assessment using a quantitative and interpretable biological systems framework. Thus, short-term goals have been to develop the molecular tools to investigate key biological events, and measurable biomarkers linked to those events, related to important disease processes that are impacted by environmental chemical exposures, such as liver and lung toxicity.  We have focused recent efforts on early-in-life genomic and epigenetic alterations and linkages to latent adverse outcome susceptibility due to commons exposures, genetics, and pre-existing conditions. Our laboratory uses cutting edge techniques such as gene editing tools including CRISPR-based methods; next generation nucleic acid-based sequencing to probe the genome and epigenome; advance, high-throughput microscopy; targeted RNA, DNA, and non-coding RNA measurements such as digital drop PCR and Fireplex; and advanced in vitro models.