Faculty Database:
[ PhD Program: Systems Biology Keyword: ]

Filter faculty by:
See All
NameEmailPhd ProgramResearch InterestsPublications
Arendshorst, William email , , , , publications

We study mechanisms of cellular and molecular function as they control cardiovascular and kidney physiology in health and disease. We focus on G-protein coupled receptors and calcium signaling pathways of resistance arterioles that regulate vascular resistance in normal kidneys and pathophysiologically such as those of animals with genetic hypertension or animals with genes deleted. Measurements include renal vascular reactivity to neurohormonal agents and autacrine/paracrine factors combined with parallel investigation of receptor/calcium signal transduction in vascular smooth muscle cells in vitro.

Bear, James E. email , , , , , , , publications

Our lab uses a combination of genetics, high-resolution cellular and animal imaging, animal tumor models and microfluidic approaches to study the problems of cell motility and cytoskeletal organization. We are particularly interested in 1) How cells sense cues in their environment and respond with directed migration, 2) How the actin cytoskeleton is organized at the leading edge of migrating cells and 3) How these processes contribute to tumor metastasis.

Boettiger, Charlotte email , , , , publications

My lab uses a cognitive neuroscience approach to understand the neurobiology of drug addiction in humans. The tools we use include fMRI, cognitive testing, physiological monitoring, pharmacology, and genetic testing. We specifically seek to determine 1) how the brain learns new stimulus-response associations and replaces learned associations, 2) the neurobiological mechanisms underlying the tendency to select immediate over delayed rewards, and 3) the neural bases of addiction-related attentional bias.

Carelli, Regina M. email , , , , publications

Research in the Carelli laboratory is in the area of behavioral neuroscience.  Our studies focus on the neurobiological basis of motivated behaviors, including drug addiction. Electrophysiology and electrochemistry procedures are used during behavior to examine the role of the brain ‘reward’ circuit in natural (e.g., food) versus drug (e.g., cocaine) reward.   Studies incorporate classical and operant conditioning procedures to study the role of the nucleus accumbens (and dopamine) and associated brain regions in learning and memory, as they relate to motivated behaviors.

Chen, Xian email , , , , publications

Developing and applying novel mass spectrometry (MS)-based proteomics methodologies for high throughput identification, quantification, and characterization of the pathologically relevant changes in protein expression, post-translational modifications (PTMs), and protein-protein interactions.  Focuses in the lab include: 1) technology development for comprehensive and quantitative proteomic analysis, 2) investigation of systems regulation in toll-like receptor-mediated pathogenesis and 3) proteomic-based mechanistic investigation of stress-induced cellular responses/effects in cancer pathogenesis.

Clemmons, David R email , , , , , , publications

Cross-talk between insulin like growth factor -1 and cell adhesion receptors in the regulation of cardiovascular diseases and complications associated with diabetes.

Cohen, Jessica email , , , , publications

The Cohen Lab investigates how functional brain networks in humans interact and reconfigure when confronted with changing cognitive demands, when experiencing transformations across development, and when facing disruptions in healthy functioning due to disease. We are also interested in how this neural flexibility contributes to flexibility in control and the ability to learn, as well as the consequences of dysfunction in this flexibility. We use behavioral, neuroimaging, and clinical approaches taken from neuroscience, psychology, and mathematics to address our research questions.

Cohen, Todd email , , , , publications

My research aims to uncover the molecular aspects of protein aggregation diseases (also called PAD) which include neurodegenerative diseases (such as Alzheimer’s disease and Amyotrophic Lateral Sclerosis), myofibrillar myopathies (such as muscular dystrophies), as well as the formation of age-related cataracts.  Although very distinct, these disorders share a common underlying pathogenic mechanism.  Using a combination of biochemistry and in vitro approaches, cell biology, and primary cells / transgenic mouse models, we will investigate the post-translational modifications (PTMs) that drive these disease processes. Ultimately, this research will provide a platform for future drug discovery efforts against these devastating diseases.

Davis, Ian email , , , , publications

With a particular interest in pediatric solid tumors, our lab aims to develop a mechanistic understanding of the role of aberrant or dysregulated transcription factors in oncogenesis.

Dayan, Eran email , , , publications

Our lab studies brain network connectivity in the healthy brain and in neurological and neuropsychiatric patient populations. We focus on the organizational, dynamical, and computational properties of large-scale brain networks and determine how these properties contribute to human behavior in health and disease. We strive to advance the basic understanding of brain structure and function, while making discoveries that can be translated to clinical practice.

Dohlman, Henrik email , , , , , , publications

We use an integrated approach (genomics, proteomics, computational biology) to study the molecular mechanisms of hormone and drug desensitization. Our current focus is on RGS proteins (regulators of G protein signaling) and post-translational modifications including ubiquitination and phosphorylation.

Dokholyan, Nikolay email , , , , , publications

The mission of my laboratory is to develop and apply integrated computational and experimental strategies to understand, sense, and control misfolded proteins, and uncover the etiologies of human diseases. UNDERSTAND: We are working toward understanding of the protein misfolding diseases, such as Lou Gehrig’s disease and cystic fibrosis.. Other areas of interest include HIV, Graft versus Host disease (fatal autoimmune response to bone marrow transplant), and understanding and developing new drugs for pain. SENSE: We are working toward developing genetically-encoded proteins that bind and report rare/intermediate conformations of target molecules (proteins and RNA). CONTROL: We are working toward developing genetically-encoded proteins that control target proteins with light and/or drugs. We have developed novel approach for drug activation/deactivation of kinases, and light-activatable protein to manipulate protein function with light. We are working toward extending these approaches to other classes of proteins and on multiplexing, whereby we selectively activate/control several distinct cellular pathways via targeting several proteins simultaneously.

Elston, Timothy email , , , , publications

The Elston lab is interested in understanding the dynamics of complex biological systems, and developing reliable mathematical models that capture the essential components of these systems. The projects in the lab encompass a wide variety of biological phenomena including signaling through MAPK pathways, noise in gene regulatory networks, airway surface volume regulation, and understanding energy transduction in motor proteins. A major focus of our research is understanding the role of molecular level noise in cellular and molecular processes. We have developed the software tool BioNetS to accurately and efficiently simulate stochastic models of biochemical networks

Emanuele, Michael email , , , , , , publications

Our lab applies cutting edge genetic and proteomic technologies to unravel dynamic signaling networks involved in cell proliferation, genome stability and cancer. These powerful technologies are used to systematically interrogate the ubiquitin proteasome system (UPS), and allow us to gain a systems level understanding of the cell at unparalleled depth. We are focused on UPS signaling in cell cycle progression and genome stability, since these pathways are universally perturbed in cancer.

Fenton, Suzanne E. email , , , publications

The Reproductive Endocrinology Group in the National Toxicology Program (NTP) Labs, led by Dr. Fenton, focuses on the role of environmental chemicals in breast developmental timing as it relates to puberty, increased susceptibility to form breast tumors, altered lactational ability, and the effects of chemicals on independent breast cancer risk factors such as obesity, breast density and pubertal timing. The projects within the lab often take a systems biology approach to the problem and instead of delving into exact mechanisms of an insult, which is in line with the missions of the NTP. The group also provides expertise in the use of whole mount mammary gland preparations in evaluating early life development of both male and female rat offspring and lifelong effects in female mice.

Frohlich, Flavio email , , , , , , publications

Our goal is to revolutionize the treatment of psychiatric and neurological illness by developing novel brain stimulation paradigms. We identify and target network dynamics of physiological and pathological brain function. We combine computational modeling, optogenetics, in vitro and in vivo electrophysiology in animal models and humans, control engineering, and clinical trials. We strive to make our laboratory a productive, collaborative, and happy workplace.

Fry, Rebecca email , , publications

The lab focuses on understanding how environmental exposures are associated with human disease with a particular focus on genomic and epigenomic perturbations. Using environmental toxicogenomics and systems biology approaches, we aim to identify key molecular pathways that associate environmental exposure with diseases. A current focus in the lab is to study prenatal exposure to various types of metals including arsenic, cadmium, and lead. We aim to understand molecular mechanisms by which such early exposures are associated with long-term health effects in humans. For example, we are examining DNA methylation (epigenetic) profiles in humans exposed to metals during the prenatal period. This research will enable the identification of gene and epigenetic biomarkers of metal exposure. The identified genes can serve as targets for study to unravel potential molecular bases for metal-induced disease. Ultimately, we aim to identify mechanisms of metal -induced disease and the basis for inter-individual disease susceptibility.

Gomez, Shawn email , , , , publications

Our primary research is in the area of computational systems biology, with particular interest in the study of biological signaling networks; trying to understand their structure, evolution and dynamics. In collaboration with wet lab experimentalists, we develop and apply computational models, including probabilistic graphical and multivariate methods along with more traditional engineering approaches such as system identification and control theory, to current challenges in molecular biology and medicine. Examples of recent research projects include: prediction of protein interaction networks, multivariate modeling of signal transduction networks, and development of methods for integrating large-scale genomic data sets.

Hahn, Klaus email , , , , , , , , , publications

Dynamic control of signaling networks in living cells; Rho family and MAPK networks in motility and network plasticity; new tools to study protein activity in living cells (i.e., biosensors, protein photomanipulation, microscopy). Member of the Molecular & Cellular Biophysics Training Program and the Medicinal Chemistry Program.

Herman, Melissa email , , , , publications

My research interests involve the structure of inhibitory neuronal networks and how these networks change to produce adverse behavioral outcomes. My main interest is how the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) regulates neuronal networks via both synaptic and extrasynaptic forms of inhibition and how alterations in inhibitory networks contribute to clinical conditions such as alcohol use disorder, nicotine, addiction, or stress. My work has focused primarily on three brain regions: the nucleus tractus solitaries (NTS), central and basolateral amygdala, and ventral tegmental area. In each of these areas I have identified local inhibitory networks that control overall excitability and that are dysregulated by exposure to acute and or chronic exposure to alcohol or nicotine.

Hicks, Leslie M. email , , , , publications

Research in the Hicks lab focuses on development and implementation of mass spectrometric approaches for protein characterization including post-translational modifications, as well as the identification of bioactive peptides/proteins from plants. Keywords: proteins / peptides, proteomics, PTM, enzymes, analytical chemistry, mass spectrometry, separations / chromatography, plants, algae

Hodge, Clyde email , , , , , , , publications

Our preclinical research is based on the concept that drugs of abuse gain control over behavior by hijacking molecular mechanisms of neuroplasticity within brain reward circuits. To understand this process, we take a multidisciplinary preclinical approach that combines state-of-the-art behavioral methods with a variety of molecular, genetic, and pharmacological approaches. Members of our lab are dedicated to helping win the war on addiction by identifying targets of alcohol within brain reward circuits and validating compounds for potential pharmacotherapeutic impact. Our preclinical research employs several cutting-edge approaches to identify neural targets of voluntary alcohol self-administration in mice, including 2D-DIGE proteomics, Western blots, and immunohistochemistry. We evaluate neural circuits using track tracing, optogenetics, and site-specific microinjection strategies, and have plans to conduct fMRI in mice. To evaluate mechanistic regulation of behavioral pathologies in addiction, we employ knockout mice, viral vectors, and pharmacological approaches to manipulate molecular targets within specific brain region(s). We also evaluate co-morbid neuropsychiatric conditions including anxiety and depression as part of a comprehensive behavioral neuroscience strategy. The lab culture is collaborative and dynamic, innovative, and team-based. We are looking for colleagues who share an interest in understanding how alcohol hijacks reward pathways to produce addiction.

Ibrahim, Joseph G email , , , publications

My research involves developing statistical methods in computational biology, including  methods Chip-seq data as well as the development of statistical methods for gene expression and sequence data.

Jacobson, Ken email , , , publications

Structure, dynamics and function of viral domains in biomembranes.  Photomanipulation and traction mapping applied to the migration of single cells. Investigation of the mechanochemical basis of cell oscillations using systems biology approaches coupled with experiments.

Kelada, Samir email , , , , , publications

While both genes and environment are thought to influence human health, most investigations of complex disease only examine one of these risk factors in isolation.  Accounting for both types of risk factors and their complex interactions allows for a more holistic view of complex disease causation.  The Kelada lab is focused on the identification and characterization of these gene-environment interactions in airway diseases, particularly asthma, a disorder of major public health importance.   /  / Additionally, to gain insight into how the airway responds to relevant exposures (e.g., allergens or pathogens), we study gene expression in the lung (particularly airway epithelia). Our goal is identify the genetic determinants of gene expression by measuring gene expression across many individuals (genotypes). / This “systems genetics” approach allows us to identify master regulators of gene expression that may underlie disease susceptibility or represent novel therapeutic targets. /

Laederach, Alain email , , , , , publications

The Laederach Lab is interested in better understanding the relationship between RNA structure and folding and human disease. We use a combination of computational and experimental approaches to study the process of RNA folding and in the cells. In particular, we develop novel approaches to analyze and interpret chemical and enzymatic mapping data on a genomic scale. We aim to fundamentally understand the role of RNA structure in controlling post-transcriptional regulatory mechanisms, and to interpret structure as a secondary layer of information (http://www.nature.com/nature/journal/v505/n7485/full/505621a.html).  We are particularly interested in how human genetic variation affects RNA regulatory structure. We investigate the relationship between disease-associated Single Nucleotide Polymorphisms occurring in Human UTRs and their effect on RNA structure to determine if they form a RiboSNitch.

Macdonald, Jeffrey email , , , publications

Dr. Macdonald is the Founder and Scientific Director of the new Metabolomic Facility and Co-Scientific Director of the joint UNC/NCSU/NOAA Marine MRI facility at Pivers Island near Beaufort NC. Dr. Macdonald’s research goal is to combine metabolomics and tissue engineering and apply these tools to quantitative biosystem analysis.

Major, Michael Ben email , , , , , , , , , publications

The overall goal of my lab is to understand how alterations in signal transduction pathways contribute to human cancer.  To that end, a systems level approach is employed wherein functional genomics, mass spectrometry-based proteomics, gene expression and mutation data are integrated.  The resulting cancer-annotated physical/functional map of a signal transduction pathway provides us with a powerful tool for mechanistic discovery in cancer biology.  We are currently working in lymphoma and lung cancer models, with a focus on the Wnt/b-catenin and Keap1/Nrf2 pathways.

Marzluff, William email , , , , , , , , , publications

We are interested in the mechanisms by which histone protein synthesis is coupled to DNA replication, both in mammalian cell cycle and during early embryogenesis in Drosophila, Xenopus and sea urchins.

Mucha, Peter J. email , publications

We embrace an interdisciplinary approach to data science focused on networks and network representations, using mathematical models and statistical principles to develop computational tools for real-world data. With “nodes” representing objects of interest and “edges” that connect the nodes representing relationships or similarities, the concept of a network can be flexibly used across many applications. Our collaborations have included researchers in Biostatistics, Epidemiology, Infectious Diseases, Neuroscience, and Pharmacology.

Phanstiel, Doug email , , , , publications

It is estimated that less than 2% of the human genome codes for a functional protein.  Scattered throughout the rest of the genome are regulatory regions that can exert control over genes hundreds of thousands of base pairs away through the formation of DNA loops.  These loops regulate virtually all biological functions but play an especially critical role in cellular differentiation and human development. While this phenomenon has been known for thirty years or more, only a handful of such loops have been functionally characterized.  In our lab we use a combination of cutting edge genomics (in situ Hi-C, ATAC-seq, ChIP-seq), proteomics, genome editing (CRISPR/Cas), and bioinformatics to characterize and functionally interrogate dynamic DNA looping during monocyte differentiation.  We study this process both in both healthy cells and in the context of rheumatoid arthritis and our findings have broad implications for both cell biology as well as the diagnosis and treatment of human disease.

Prins, Jan F. email , , , , publications

Our group develops computational methods for the analysis of high throughput sequence data.  Our focus is on transcriptome analysis and its applications.

Purvis, Jeremy email , , , , , publications

We study the behavior of individual cells with a specific focus on “irreversible” cell fate decisions such as apoptosis, senescence, and differentiation. Why do genetically identical cells choose different fates? How much are these decisions controlled by the cell itself and how much is influenced by its environment? We address these questions using a variety of experimental and computational approaches including time-lapse microscopy, single-molecule imaging, computational modeling, and machine learning. Our ultimate goal is to not only understand how cells make decisions under physiological conditions—but to discover how to manipulate these decisions to treat disease.

Reed, Jason email , , , , , publications

Regulation of plant development:  We use techniques of genetics, molecular biology, microscopy, physiology, and biochemistry to study how endogenous developmental programs and exogenous signals cooperate to determine plant form.  The model plant Arabidopsis thaliana has numerous technical advantages that allow rapid experimental progress.  We focus on how the plant hormone auxin acts in several different developmental contexts.  Among questions of current interest are i) how auxin regulates patterning in embryos and ovules, ii) how light modifies auxin response, iii) how feedback loops affect kinetics or patterning of auxin response, iv) how flower opening and pollination are regulated, and v) whether natural variation in flower development affects rates of self-pollination vs. outcrossing.

Robinson, Donita email , , , , publications

The Robinson lab currently explores the neurodynamics of reinforcement pathways in the brain by using state-of-the-art, in vivo recording techniques in freely moving rats. Our goal is to understand the interplay of mesostriatal, mesocortical and corticostriatal circuits that underlie action selection, both in the context of normal development and function, and in the context of psychiatric disorders that involve maladaptive behavior, such as alcohol use disorder, adolescent vulnerability to drug use and addiction, cocaine-induced maternal neglect and binge-eating disorders.

Shiau, Celia email , , , , , , , publications

The Shiau Lab is integrating in vivo imaging, genetics, genome editing, functional genomics, bioinformatics, and cell biology to uncover and understand innate immune functions in development and disease. From single genes to individual cells to whole organism, we are using the vertebrate zebrafish model to reveal and connect mechanisms at multiple scales. Of particular interest are 1) the genetic regulation of macrophage activation to prevent inappropriate inflammatory and autoimmune conditions, and 2) how different tissue-resident macrophages impact vertebrate development and homeostasis particularly in the brain and gut, such as the role of microglia in brain development and animal behavior.

Shih, Yen-Yu Ian email , , , , publications

Dr. Shih is the Director of Small Animal Magnetic Resonance Imaging (MRI) at the Biomedical Research Imaging Center. His lab has implemented multi-model MRI techniques at high magnetic field to measure cerebral blood oxygenation, blood flow, blood volume, and oxygen metabolism changes in preclinical animal models. Dr. Shih’s lab is also developing simultaneous functional MRI (fMRI) and electrophysiology recording techniques at high spatial resolution to elucidate the pathophysiological mechanisms of neurovascular diseases. They will apply these techniques to (i) explore/validate functional connectivity network and neurovascular coupling in the rodent brain, (ii) study tissue characteristics after stroke, and (iii) investigate deep brain electrical stimulation, optogenetic stimulation, and pharmacogenetic stimulation in normal and Parkinsonian animal models.

Strahl, Brian D. email , , , , , publications

Our laboratory is examining the role of histone post-translational modifications in chromatin structure and function.  Using a combination of molecular biology, genetics and biochemistry, we are determining how a number of modifications to the histone tails (e.g. acetylation, phosphorylation, methylation and ubiquitylation) contribute to the control of gene transcription, DNA repair and replication.

Sullivan, Patrick email , , , , , publications

I study complex traits using linkage, association, and genetic epidemiological approaches.  Disorders include schizophrenia (etiology and pharmacogenetics), smoking behavior, and chronic fatigue.

Tarantino, Lisa M. email , , , , , , , , publications

The Tarantino lab studies addiction and anxiety-related behaviors in mouse models using forward genetic approaches. We are currently studying a chemically-induced mutation in a splice donor site that results in increased novelty- and cocaine-induced locomotor activity and prolonged stress response. We are using RNA-seq to identify splice variants in the brain that differ between mutant and wildtype animals. We are also using measures of initial sensitivity to cocaine in dozens of inbred mouse strains to understand the genetics, biology and pharmacokinetics of acute cocaine response and how initial sensitivity might be related to addiction. Finally, we have just started a project aimed at studying the effects of perinatal exposure to dietary deficiencies on anxiety, depression and stress behaviors in adult offspring. This study utilizes RNA-seq and a unique breeding design to identify parent of origin effects on behavior and gene expression in response to perinatal diet.

Valdar, William email , , , , publications

We are a quantitative genetics lab interested the relationship between genes and complex disease. Most of our work focuses on developing statistical and computational techniques for the design and analysis of genetic experiments in animal models. This includes, for example: Bayesian hierarchical modeling of gene by drug effects in crosses of inbred mouse strains; statistical methods for identifying quantitative trait loci (QTL) in a variety of experimental mouse populations (including the Collaborative Cross); computational methods for optimal design of studies on parent of origin effects; modeling of diet by gene by parentage interactions that affecting psychiatric disease; detection and estimation of genetic effects on phenotypic variability. For more information, visit the lab website.

Ward-Caviness, Cavin email , , , , publications

We are actively engaged in multiple research arenas centered around understanding the associations between environmental exposures (primarily air pollution) and health outcomes. We use large clinical cohorts and electronic health records to understand associations between air pollution and health outcomes such as cardiovascular disease, metabolic disease, and aging. We use metabolomics and epigenetic data (primarily DNA methylation) to investigate molecular mechanisms, and highlight the integration of ‘omics data in a systems biology framework to better understand dysregulated pathways. Finally, we have projects centered around methods development and causal analyses to improve our understanding of the biology central to environmental health effects.

Wilhelmsen, Kirk email , , , , publications

The Wilhelmsen lab is engaged in the genetic mapping of susceptibility loci for complex neurological diseases and has been developing large-scale automated gene mapping technologies to facilitate these mapping efforts. They have invested heavily in automation that enables high-throughput genotyping and data processing. As data accumulates, this will enable parametric and nonparametric linkage analysis of large numbers of traits at regular intervals for the entire genome. The Wilhelmsen lab is applying these techniques to two projects: (1) the genetics of alcoholism and (2) positional cloning of the gene responsible for a family of disorders called frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17).

Zhang, Qi email , , , , publications

Our laboratory is focusing on developing and applying solution-state NMR methods, together with computational and biochemical approaches, to understand the molecular basis of nucleic acid functions that range from enzymatic catalysis to gene regulation. In particular, we aim to visualize, with atomic resolution, the entire dynamic processes of ribozyme catalysis, riboswitch-based gene regulation, and co-transciptional folding of mRNA. The principles deduced from these studies will provide atomic basis for rational manipulation of RNA catalysis and folding, and for de novo design of small molecules that target specific RNA signals. Research program in the laboratory provides diverse training opportunities in areas of spectroscopy, biophysics, structural biology, computational modeling, and biochemistry.