Faculty Database:
[ PhD Program: Stem Cells Keyword: ]

Filter faculty by:
See All
NameEmailPhd ProgramResearch InterestsPublications
Calabrese, J. Mauro email , , , , , , , , , publications

Our lab is trying to understand the mechanisms by which long noncoding RNAs orchestrate the epigenetic control of gene expression. Relevant examples of this type of gene regulation occur in the case of X-chromosome inactivation and autosomal imprinting. We specialize in genomics, but rely a combination of techniques —  including genetics, proteomics, and molecular, cell and computational biology — to study these processes in both mouse and human stem and somatic cell systems.

De Paris, Kristina email , , , publications

Our research focuses on the immunological aspects of pathogen-host interactions. The lab is actively involved in HIV pathogenesis and vaccine studies using the nonhuman primate model of SIV infection. We are particularly interested in pediatric HIV transmission by breast-feeding and the early, local host immune response. A main research focus is on developmental differences in host immune responses between infants and adults and how they alter pathogenesis. The effect of co-infections (e.g. malaria and Tb) on HIV pathogenesis and transmission is a second research focus. The lab is developing a nonhuman primate model of SIV-Plasmodium fragile co-infection to study HIV-P. falciparum infection in humans.

Gupton, Stephanie email , , , , , , , publications

During cell shape change and motility, a dynamic cytoskeleton produces the force to initiate plasma membrane protrusion, while vesicle trafficking supplies phospholipids and membrane proteins to the expanding plasma membrane. Extracellular cues activate intracellular signaling pathways to elicit specific cell shape changes and motility responses through coordinated cytoskeletal dynamics and vesicle trafficking. In my lab we are investigating the role of two ubiquitin ligases, TRIM9 and TRIM67, in the cell shape changes that occur during neuronal development. We utilize a variety techniques including high resolution live cell microscopy, gene disruption, mouse models, and biochemistry to understand the complex coordination of cytoskeletal dynamics and membrane trafficking driving neuronal shape change and growth cone motility in primary neurons.

Williams, Scott E email , , , , , , , , publications

Divisions and decisions in development and disease. The mammalian skin epithelium is an ideal model system to study fundamental questions in stem cell and cancer biology. It is accessible; it can be cultured, genetically manipulated and transplanted; and its resident stem cells possess unparalleled regenerative capacity. Our skin, unlike many other organs, undergoes continuous growth and turnover. In development and homeostasis, progenitors in the skin must balance self-renewal and differentiation programs. We have found that asymmetric cell divisions are a critical mechanism by which skin progenitors maintain this equilibrium. We are interested in studying how this asymmetry is controlled at a molecular level, and how division orientation impacts cell fate choices in normal and neoplastic growth. To facilitate these and other studies in diverse epithelia, we have developed a powerful functional tool, lentiviral in vivo RNAi, which allows us to rapidly perform functional studies on any gene in the intact mouse in weeks instead of years. Our broad goal will be to use this technique, in combinations of candidate and screening approaches, to dissect pathways that influence stem cell differentiation. I will be joining the Pathology Department in April, 2013 and am seeking passionate, open-minded, and interactive students for the summer and beyond.