Faculty Database:
[Research Interest: Nanomedicine]

Filter faculty by:
See All
NameEmailPhd ProgramResearch InterestsPublications
Ainslie, Kristy M email , , , publications

We have several areas of research interest broadly in the area of immunomodulation using micro/nanoparticles and other carrier systems.  This can include development of traditional vaccines, therapeutic autoimmune vaccines and classic drug delivery platforms targeted to bacterial, viral or parasitic host cells.  To this end, we also seek to develop new materials and platforms optimal for use in modulating immune responses as well as developing scalable production of micro/nanoparticles.

Anselmo, Aaron C. email , , , publications

The human body coexists with communities of microbes and bacteria called microbiota, and the balance of these microbes regulates both health and disease. In some cases, imbalances in microbiota have been linked to diseases, such as cancer and diabetes. My group will develop approaches and formulations to deliver specific compounds and microbes to modulate microbiota composition towards healthy states. Other research interests include the development of cell-mediated delivery systems, synthetic cells and nanoparticle drug-delivery systems for applications in vascular disease and cancer.

Asokan, Aravind email , , , , , publications

Our research group is focused on combining the tools and principles of molecular biology and genetics with chemistry to generate a synthetic viral toolkit. The lab-derived synthetic viral entities are utilized to dissect mechanisms of viral tissue tropism, as new reagents for applications in genomics and proteomics and as new vectors for human gene therapy applications.

Bahnson, Edward Moreira email , , , , , , publications

We are interested in studying diabetic vasculopathies. Patients with type 2 diabetes mellitus or metabolic syndrome have aggressive forms of vascular disease, possessing a greater likelihood of end-organ ischemia, as well as increased morbidity and mortality following vascular interventions. Our long term research aims to change the way we treat arterial disease in diabetes by:

  • Understanding why arterial disease is more aggressive in diabetic patients, with a focus in redox signaling in the vasculature.
  • Developing targeted systems using nanotechnology to locally deliver therapeutics to the diseased arteries.
Batrakova, Elena email , , publications

What if you can target and deliver a drug directly to the side of disease in the body? It is possible, when you use smart living creatures pro-inflammatory response cells, such as monocytes, T-lymphocytes or dendritic cells. You can load these cells with the drug and inject these carriers into the blood stream. They will migrate to the inflammation site (for example, across the blood brain barrier) and release the drug. Thus, you can reduce the inflammation and protect the cells (for example, neurons) in patients with Parkinson’s and Alzheimer diseases.

DeSimone, Joseph M. email , , , , publications

The direct fabrication and harvesting of monodisperse, shape-specific nano-biomaterials are presently being designed to reach new understandings and therapies in cancer prevention, diagnosis and treatment.  Students interested in a rotation in the DeSimone group should not contact Dr. DeSimone directly.  Instead please contact Chris Luft at jluft@email.unc.edu.

Han, Zongchao email , , , , publications

My research focus centers on retinal gene/drug therapy using nanotechnologies. My laboratory is interested in developing gene therapies for inherited blinding diseases and eye tumors. We are particularly interested in understanding the gene expression patterns that are regulated by the cis-regulatory elements. We utilize compacted DNA nanoparticles which have the ability to transfer large genetic messages to overcome various technical challenges and to appreciate the translational potential of this technology. This multidimensional technology also facilitated targeted drug delivery. Currently, we are working on the design and development of several specific nano formulations with targeting, bioimaging and controlled release specificities.

Hirsch, Matthew email , , , , , publications

Our lab works with adeno-associated viral vectors for both the characterization of vector and host responses upon transduction and as therapeutic agents for the treatment of genetic diseases.  In particular, we tend to focus on the 145 nucleotide viral inverted terminal repeats of the transgenic genome and their multiple functions including the replication initiation, inherent promoter activity, and stimulation of intra/inter molecular DNA repair pathways.  The modification of the AAV ITRs by synthetic sequences imparts unique functions/activities rendering these synthetic vectors perhaps better suited for therapeutic applications.

Huang, Leaf email , , publications

Dr. Huang is a pioneer in nanoparticle vectors for delivery of drugs, genes and vaccines. He has designed a core/membrane type nanoparticle which evades the macrophages in the liver and the spleen and deliver a large fraction of the injected dose to the target cells. The nanomedicine can encapsulate siRNA, peptide or chemotherapy drugs, either alone or in combination, resulting in effective inhibition of tumor growth. The Huang lab is also interested in designing peptide or mRNA vaccines for cancer immunotherapy. He uses nanoparticles as a tool to study the cross talks between cells in the tumor microenvironment.

Jay, Michael email , publications

My research projects are at the interface between the pharmaceutical and nuclear sciences.  They involve the application of pharmaceutical approaches to solve problems related to nuclear imaging and therapy, and the use of radioanalytical approaches to solve problems encountered in the development of novel formulations and drug delivery systems.  I am currently developing orally bioavailable prodrugs of DTPA as radionuclide decorporation agents that can be added to the National Stockpile for use following a nuclear terrorism event or accident.   In addition, I am neutron activated to produce radiotherapeutic microneedles and nanoparticles using novel matrices. As with most of my colleagues in the Pharmaceutical Sciences Graduate Program, my Ph.D. students find rewarding employment upon graduation.  My academic offspring currently hold senior positions in the pharmaceutical industry and lead research centers in prestigious academic institutions.

Kabanov, Alexander (Sasha) email , , publications

In our lab we develop novel polymer based drug delivery systems and nanomedicines incorporating small molecules, DNA and polyptides to treat cancer, neurodegenerative and other CNS-related disorders.

Lai, Samuel email , , , , , , , , publications

Our dynamic group are broadly involve in three topics: (i) prevention of infectious diseases by harnessing interactions between secreted antibodies and mucus, (ii) immune response to biomaterials, and (iii) targeted delivery of nanomedicine.  Our group was the first to discover that secreted antibodies can interact with mucins to trap pathogens in mucus.  We are now harnessing this approach to engineer improved passive and active immuniation (i.e. vaccines) at mucosal surfaces, as well as understand their interplay with the mucosal microbiome.  We are also studying the adaptive immune response to polymers, including anti-PEG antibodies, and how it might impact the efficacy of PEGylated therapeutics.  Lastly, we are engineering fusion proteins that can guide targeted delivery of nanomedicine to heterogenous tumors and enable personalized medicine.

Liu, Rihe email , , , , publications

The research interests of the Liu Lab are in functional proteomics and biopharmaceuticals. Currently we are working on the following projects:  (1). Using systems biology approaches to decipher the signaling pathways mediated by disease-related proteases such as caspases and granzymes and by post-translationally modified histones. We address these problems by performing functional protein selections using mRNA-displayed proteome libraries from human, mouse, Drosophila, and C. elegans. (2). Developing novel protein therapeutics and nucleic acid therapeutics that can be used in tumor diagnosis, treatment, and nanomedicine. We use various amplification-based molecular evolution approaches such as mRNA-display and in vivo SELEX to develop novel single domain antibody mimics on the basis of very stable protein domains or to generate aptamers on the basis of nuclease-resistant nucleic acids, that bind to important biomarkers on the surface of cancer cells. We further conjugate these biomarker-binding affinity reagents to small molecule drugs or nanoparticles for targeted delivery of therapeutic agents. (3). Identifying the protein targets of drugs or drug candidates whose action mechanisms are unknown. We combine molecular proteomic and chemical biology approaches to identify the protein targets of drugs whose target-binding affinities are modest.

Pecot, Chad Victor email , , , , publications

The development of metastases is the cause of death in nearly all cancer patients, yet the mechanisms driving metastatic biology remain poorly understood. Also, few cancer therapeutics are being developed to specifically control this problem. My laboratory is interested in discovering novel mechanisms that drive metastatic biology, and in utilizing RNA interference (RNAi) strategies (such as nanoparticle delivery of miRNAs/siRNAs) to control this process. We will apply integrative analysis of large bioinformatic datasets, in vitro studies for mechanistic validation, and in vivo metastasis models to assess therapeutic efficacy of our RNAi approaches.

Troester, Melissa email , , , , publications

Dr. Troester’s research focuses on stromal-epithelial interactions, genomics of normal breast tissue, breast cancer microenvironment, and molecular pathology of breast cancer progression. She is a Co-Investigator on the Carolina Breast Cancer Study (CBCS), a resource including breast tumors from thousands of African American women, and she is PI of the Normal Breast Study (NBS), a unique biospecimen resource of normal tissue from women undergoing breast surgery at UNC Hospitals. Dr. Troester has extensive experience in integrating multiple high dimensional data types. She is chair of the Normal Breast Committee for the Cancer Genome Atlas Project where she is leading coordination of histology, copy number, mutation, methylation, mRNA and microRNA expression data. She has more than a decade of experience working with genomic data and molecular biology of breast cancer progression and has published many papers in the area of breast cancer subtypes, breast microenvironment, and stromal-epithelial interactions. She has trained four postdocs, 12 predoctoral students and several undergraduates.

Wang, Andrew Z. email , , , , publications

My laboratory has two research directions. One is to utilize nanotechnology to develop novel diagnostics and therapeutics to improve cancer treatment. The other is to use techniques developed in tissue engineering to develop in vitro 3D models of cancer metastasis.

Yeh, Jen Jen email , , , , publications

We are a translational research lab. The overall goal of our research is to find therapeutic targets and biomarkers for patients with pancreatic and colorectal cancer and to translate this to the clinic. In order to accomplish this, we analyze patient tumors using microarray analysis, identify and validate targets using forward and reverse genetic approaches in both cell lines and mouse models. At the same time, we evaluate novel therapeutics for promising targets in mouse models in order to better predict clinical response in humans. We also collaborate with the DeSimone and Huang labs to apply nanotechnology to drug delivery and therapeutics. Keywords: genomics, biomarkers, translational research, microarray, signaling, pancreatic cancer, colon cancer, mouse models, GEMM, drug discovery, nanoparticles.