Faculty Database:
[ PhD Program: Molecular Medicine Keyword: ]

Filter faculty by:
See All
NameEmailPhd ProgramResearch InterestsPublications
Arthur, Janelle C. email , , , , publications

The Arthur lab is interested in mechanisms by which inflammation alters the functional capabilities of the microbiota, with the long-term goal of targeting resident microbes as a preventative and therapeutic strategy to lessen inflammation and reduce the risk of colorectal cancer. We utilize a unique and powerful in vivo system – germ-free and gnotobiotic mice – to causally link specific microbes, microbial genes, and microbial metabolites with health and disease in the gut.  We also employ basic immunology and molecular microbiology techniques as well as next generation sequencing and bioinformatics to evaluate these essential host-microbe interactions.

Baldwin, Albert S. email , , , , , , publications

Our laboratory studies an amazing regulatory factor known as NF-kappaB. This transcription factor controls key developmental and immunological functions and its dysregulation lies at the heart of virtually all major human diseases.

Clemmons, David R email , , , , , , publications

Cross-talk between insulin like growth factor -1 and cell adhesion receptors in the regulation of cardiovascular diseases and complications associated with diabetes.

Cox, Adrienne email , , , , , , publications

Our lab is interested in molecular mechanisms of oncogenesis, specifically as regulated by Ras and Rho family small GTPases. We are particularly interested in understanding how membrane targeting sequences of these proteins mediate both their subcellular localization and their interactions with regulators and effectors. Both Ras and Rho proteins are targeted to membranes by characteristic combinations of basic residues and lipids that may include the fatty acid palmitate as well as farnesyl and geranylgeranyl isoprenoids. The latter are targets for anticancer drugs; we are also investigating their unexpectedly complex mechanism of action. Finally, we are also studying how these small GTPases mediate cellular responses to ionizing radiation – how do cells choose whether to arrest, die or proliferate?

Cyr, Douglas M. email , , , , publications

The Cyr laboratory studies cellular mechanisms for cystic fibrosis and prion disease.  We seek to determine how protein misfolding leads to the lung pathology associated with Cystic Fibrosis and the neurodegeneration associated with prion disease.

Doerschuk, Claire M email , , , , publications

We study host defense mechanisms in the lungs, particularly the inflammatory and innate immune processes important in the pathogenesis and course of bacterial pneumonia, acute lung injury/acute respiratory distress syndrome, and cigarette smoke-associated lung disease. Basic and translational studies address mechanisms of host defense, including recruitment and function of leukocytes, vascular permeability leading to edema, bacterial clearance and resolution.  Cell signaling pathways initiated by binding of leukocyte-endothelial cell adhesion molecules and molecular mechanisms underlying the functions of neutrophils are two particular areas.

Erie, Dorothy email , , , , publications

The research in my lab is divided into two main areas – 1) Atomic force microscopy and fluorescence studies of protein-protein and protein-nucleic acid interactions, and 2) Mechanistic studies of transcription elongation. My research spans the biochemical, biophysical, and analytical regimes.

Garcia-Martinez, J. Victor email , , , , publications

Over millions of years of coexistence humans and pathogens have develop intricate and very intimate relationships.  These highly specialized interactions are the basic determinants of pathogenesis and disease progression.  Our laboratory is interested in elucidating the molecular basis of disease.  Our multidisciplinary approach to molecular medicine is based on our interest in the translation of basic research observations into clinical implementation.  For this purpose we use a variety of in vitro and in vivo approaches to study AIDS, Cancer, immunological diseases, gene therapy, etc.  Of particular interest is the use of state of the art models such as humanized mice to study human specific pathogens like HIV, EBV, Kaposiâ’s sarcoma, influenza, xenotropic murine leukemia virus-related virus.  In addition, we are interested in the development and implementation of novel approaches to prevent viral transmission using pre-expossure prophylaxis and vaccines.

Gray, Steven email , , , , publications

My core expertise is in adeno-associated virus (AAV) gene therapy vector engineering, followed by optimizing approaches to deliver a gene to the central and peripheral nervous system.  As reagents have been developed to achieve global and efficient nervous system gene transfer, my research focus has also included preclinical studies to apply these reagents toward the treatment of neurological and ocular diseases.  Currently these include Rett Syndrome, Giant Axonal Neuropathy, Tay-Sachs, Krabbe, Batten Disease (INCL and LINCL), and AGU.  My ongoing research focuses on 1) continued development and optimization of AAV vectors specifically tailored toward neurologic and ophthalmologic disorders 2) testing novel gene therapy approaches for applicable disorders, and 3) facilitating the translation of these approaches from bench to clinic.

I am a member of the UNC Gene Therapy Center, Carolina Institute for Developmental Disabilities, and Department of Ophthalmology.  My lab has several strong partnerships with patient and rare disease advocacy groups. A major accomplishment from my lab is that we independently developed a gene therapy approach to treat Giant Axonal Neuropathy, which is in clinical testing at the NIH Clinical Center (https://clinicaltrials.gov/ct2/show/NCT02362438).

Hathaway, Nathaniel A. email , , , , , publications

The Hathaway lab is focused on understanding the biological events responsible for dynamically regulating the selective expression of the mammalian genome. In multicellular organisms, genes must be regulated with high precision during stem cell differentiation to achieve normal development. Pathologically, the loss of proper gene regulation caused by defects in chromatin regulatory enzymes has been found to be a driving force in cancer initiation and progression. My lab uses a combination of chemical biology and cell biology approaches to unravel the molecular mechanisms that govern gene expression. We utilize new tools wielding an unprecedented level of temporal control to visualize changes in chromatin structure and function in mammalian cells and animal models. In addition, we seek to identify small molecule inhibitors that are selective for chromatin regulatory enzymes with the potential for future human therapeutics.

Henning, Susan J email , , publications

Intestinal stem cells (ISC) are central to the biology of the intestinal epithelium (which is the most rapidly proliferating tissue in the human body) and may have significant therapeutic potential for repair of intestinal damage. We have developed novel methods to isolate ISC. Current projects include: a.) refinement of these methods to get purer preparations; and b.) development of protocols in vitro expansion of ISC and their in vivo transplantation. Thus, our lab offers both basic science and translational research opportunities.

Jarstfer, Michael email , , , , publications

The Jarstfer lab uses an interdisciplinary approach to solve biological problems that are germane to human health.   Currently we are investigating the structure of the enzyme telomerase, we are developing small-molecules that target the telomere for drug discovery and chemical biology purposes, and we are investigating the signals that communicate the telomere state to the cell in order to control cellular immortality. We are also engaged in a drug/chemical tool discovery project to identify small molecules that control complex social behavior in mammals.  Techniques include standard molecular biology and biochemistry of DNA, RNA, and proteins, occasional organic synthesis, and high throughput screening.

Kafri, Tal email , , , , publications

Our lab is focused on the development of HIV-1 vectors for gene therapy of genetic disease.  In addition, we are using the vector system to study HIV-1 biology.  We are also interested in utilizing the HIV-1 vector system for functional genomics.

Ke, Hengming email , , , , publications

Our research focuses on the structure and function of medically important proteins from the crystallographic approach.  The current topics include cycolphilin, calcineurin, heat shock protein 90 (hsp90), and cyclic nucleotide phosphodiesterase.

Lawrence, David S email , , , , , , publications

Living cells have been referred to as the test tubes of the 21st century. New bioactive reagents developed in our lab are designed to function in cells and living organisms. We have prepared enzyme inhibitors, sensors of biochemical pathways, chemically-altered proteins, and activators of gene expression. In addition, many of these agents possess the unique attribute of remaining under our control even after they enter the biological system. In particular, our compounds are designed to be inert until activated by light, thereby allowing us to control their activity at any point in time.

Loeser, Richard F. email , , , , publications

The Loeser lab uses a combination of in vitro studies in articular chondrocytes and in vivo studies in mice to examine molecular mechanisms of joint tissue destruction in aging and osteoarthritis. A major focus of this work is examining how reactive oxygen species regulate cell signaling through oxidation of Cys residues in specific kinases and phosphatases. Pathways of interest include integrin mediated signaling that stimulates matrix metalloproteinase (MMP) expression and IGF-I signaling that stimulates matrix production. Oxidative stress disrupts the balance in the activity of these pathways to favor matrix destruction over repair contributing to the development of osteoarthritis.

Maeda, Nobuyo N. email , , , , , , , publications

Our research is focused on the genetics and molecular pathology of complex multi-factorial conditions in humans – obesity, diabetes, hypercholesterolemia, insulin resistance, and hypertension.  These conditions underlie cardiovascular diseases, including atherosclerosis, the major cause of death and disabilities in North America. Our approach consists of experiments with mice carrying modifications in various genes important for the maintenance of vascular function, antioxidant defense, and metabolism.  We dissect how gene-gene and gene-environment interaction influences the pathogenesis of these common human conditions and their complications.

Margolis, David email , , , , publications

The overall goal of our laboratory is to obtain new insights into the host-virus interaction, particularly in HIV infection, and translate discoveries in molecular biology and virology to the clinic to aid in the treatment of HIV infection. A subpopulation of HIV-infected lymphocytes is able to avoid viral or immune cytolysis and return to the resting state. Current work focuses on the molecular mechanisms that control the latent reservoir of HIV infection within resting T cells. We have found that cellular transcription factors widely distributed in lymphocytes can remodel chromatin and maintain quiescence of the HIV genome in resting CD4+ lymphocytes. These studies give insight into the basic molecular mechanisms of eukaryotic gene expression, as well as new therapeutic approaches for HIV infection.

Miller, C. Ryan email , , , , , , , , , , publications

My laboratory studies diffuse gliomas, devastating primary tumors of the central nervous system for which few effective drugs are currently available.  We utilize genetically engineered mice, cell culture, and human tumor model systems to explore the molecular pathogenesis of gliomas.  We utilize animal model systems to develop drugs and diagnostic markers for their individualized therapy.  Rotating students gain experience with multiple techniques, including cell culture, molecular biology, genomics, genetic lineage tracing, fluorescence microscopy, and digital image analysis.

Mohlke, Karen email , , , , , publications

We identify genetic variants that influence common human traits with complex inheritance patterns, and we examine the molecular and biological mechanisms of the identified variants and the genes they affect. Currently we are investigating susceptibility to type 2 diabetes and obesity, and variation in cholesterol levels, body size, body shape, and metabolic traits. We detect allelic differences in chromatin structure and gene expression and examine gene function in human cell lines and tissues. In addition to examining the primary effects of genes, the lab is exploring the interaction of genes with environmental risk factors in disease pathogenesis. Approaches include genome-wide association studies, molecular biology, cell biology, genetic epidemiology, sequencing, and bioinformatic analysis of genome-wide data sets.

Redinbo, Matt email , , , , , , , publications

The Redinbo Laboratory examines dynamic cellular processes using structural, chemical, molecular and cell biology. Our goals are to discover new drugs and to elucidate molecular pathways essential to human disease.  Current projects include developing the first drugs that target the human microbiome, unraveling the nature of innate immunity in the human lung, and discovering how microbial systems exchange genes, including those that encode antibiotic resistance.

Stafford, Darrel W. email , , , publications

My laboratory at present is working on the vitamin K cycle and vitamin K-dependent proteins.  The enzymes of the vitamin K cycle include, at a minimum two integral membrane proteins, both of which were purified and cloned by my laboratory.  One, the vitamin K epoxide reductase is the target of warfarin for which 40 million prescriptions are written each year in the US alone.  Polymorphisms in this gene are the best example to date of the use of genomics in molecular medicine.  We are also interested in purifying any additional components of this cycle and trying to understand the ~50% of patients whose genotype is not informative about warfarin dose.  In addition, we are interested in the mechanism of how factor VIIa works and the role of the extracellular matrix in coagulation.

Tidwell, Richard R email , , , publications

Dr. Tidwell’s research is focused on the design and synthesis of new drugs for the treatment of AIDS-associated opportunistic infections.  The rationale for design of new drugs is directed at determining the mechanisms of action, antimicrobial activity, and pharmacokinetics of dicationic molecules.  Studies have been initiated to isolate and identify new drug targets from Pneumocystis carinii and Cryptosporidium parvum utilizing molecular modeling and biochemical methods to aid in the determination of new structures.  The role of proteases and imidazoline receptors in the pathogenesis of disease continues to be a major area of research as well as a new prodrug approach for the cationic molecules to allow for much improved bioavailability.

Tropsha, Alexander email , , , , , , , publications

The major area of our research is Biomolecular Informatics, which implies understanding relationships between molecular structures (organic or macromolecular) and their properties (activity or function). We are interested in building validated and predictive quantitative models that relate molecular structure and its biological function using statistical and machine learning approaches. We exploit these models to make verifiable predictions about putative function of untested molecules.

Whang, Young E. email , , , , publications

My laboratory is interested in characterizing the role of cytoplasmic signal transduction pathways in regulation of androgen receptor activity and progression of prostate cancer.  Our studies have focused on HER-2 receptor tyrosine kinase and we have demonstrated that HER-2 activation stimulates androgen receptor activity and HER-2 inhibition inhibits androgen receptor transcriptional function at the level of recruitment to the androgen responsive enhancers.  These findings have led to the design and initiation of the protocol involving lapatinib, a clinical HER-2 inhibitor, in treatment of patients with prostate cancer.  More recently, we have demonstrated that activated Cdc42-associated kinase Ack1 promotes progression of prostate cancer via tyrosine phosphorylation of androgen receptor at Tyr-267 and Tyr-363 residues.  We are interested in further characterizing the role of tyrosine phosphorylation of androgen receptor in prostate cancer and development of Ack1 targeted therapy for clinical use.

Wolberg, Alisa email , , , , publications

We investigate cellular, molecular, and biochemical mechanisms of blood coagulation.  Using in vitro, ex vivo, and in vivo models, we focus on mechanisms contributing to cardiovascular disease (heart attack, stroke, deep vein thrombosis), including the effects of plasma proteins, cells, and blood flow (shear) on blood clot biochemical and mechanical stability.  We have shown that abnormalities in blood protein and/or cellular function contribute to bleeding and clotting pathologies including hemophilia and thrombosis, and shown how hemostatic and antithrombotic therapeutics modulate clot quality.  Current efforts are focused on pathophysiologic mechanisms that result in bleeding or prothrombotic disease (e.g., cancer).  Our overall goal is to translate this knowledge into novel approaches for treating bleeding and clotting disorders.