Faculty Database:
[ PhD Program: Genetics Keyword: ]

Filter faculty by:
See All
NameEmailPhd ProgramResearch InterestsPublications
Ahmed, Shawn email , , , , , publications

Our research group utilizes the nematode C. elegans to investigate germ cell immortality: mechanisms that allow germ cells remain eternally youthful as they are transmitted from one generation to the next. We also study how telomerase functions at chromosome termini, as well as the consequences of telomere dysfunction.

Amelio, Antonio L. email , , , , , , , publications

Our laboratory is broadly interested in understanding the molecular mechanisms of transcriptional regulation by cell signaling pathways and the role of pathway cross-talk in cancer biology. In particular, the cAMP signaling cascade directs adaptive cellular responses to a variety of stress stimuli via a combination of acute affects arising from GS-protein coupled receptor (GPCR)-mediated activation of PKA and long-term affects resulting from transcriptional reprogramming directed by CREB and the CREB Regulated Transcription Coactivators (CTRCs). We are applying an interdisciplinary approach to study the consequences of aberrant activation of the cAMP/CREB/CRTC signal circuit on these adaptive responses and how cooperative signaling with other pathways promotes oncogenic processes in oral, head, and neck cancers.

Anton, Eva email , , , , , publications

Laminar organization of neurons in cerebral cortex is critical for normal brain function. Two distinct cellular events guarantee the emergence of laminar organization– coordinated sequence of neuronal migration, and generation of radial glial cells that supports neurogenesis and neuronal migration. Our goal is to understand the cellular and molecular mechanisms underlying neuronal migration and layer formation in the mammalian cerebral cortex. Towards this goal, we are studying the following three related questions: 1. What are the signals that regulate the establishment, development and differentiation of radial glial cells, a key substrate for neuronal migration and a source of new neurons in cerebral cortex?2. What are the signals for neuronal migration that determine how neurons reach their appropriate positions in the developing cerebral cortex?3. What are the specific cell-cell adhesion related mechanisms that determine how neurons migrate and coalesce into distinct layers in the developing cerebral cortex?

Archer, Trevor email , , , publications

Molecular carcinogenesis: cancer, chromatin, transcription, and epigenetics

Baldwin, Albert S. email , , , , , , publications

Our laboratory studies an amazing regulatory factor known as NF-kappaB. This transcription factor controls key developmental and immunological functions and its dysregulation lies at the heart of virtually all major human diseases.

Bautch, Victoria email , , , , , , publications

Blood vessel formation in cancer and development; use mouse culture (stem cell derived vessels) and in vivo models (embryos and tumors); genetic, cell and molecular biological tools; how do vessels assemble and pattern?, dynamic image analysis.

Berg, Jonathan email , , , , , publications

My research group is broadly interested in the application of sequencing technologies in medical genetics and genomics, using a combination of wet lab and computational approaches.  As a clinician, I am actively involved in the care of patients with hereditary disorders, and the research questions that my group investigates have direct relevance to patient care.  One project uses genome sequencing in families with likely hereditary cancer susceptibility in order to identify novel genes that may be involved in monogenic forms of cancer predisposition.  Another major avenue of investigation examines the use of genome-scale sequencing in clinical medicine, ranging from diagnostic testing to newborn screening, to screening in healthy adults.

Bloom, Kerry email , , , , , , publications

Our objective is to understand the dynamic and structural properties of chromosomes during mitosis.  We use live cell imaging techniques to address how kinetochores are assembled, capture microtubules and promote faithful segregation of chromosomes.

Bourret, Bob email , , , , publications

Our long-term goal is to define the molecular mechanisms of two-component regulatory systems, which are utilized for signal transduction by bacteria, archaea, eukaryotic microorganisms, and plants.  Our current focus is to identify and understand the features that control the rates of several different types of protein phosphorylation and dephosphorylation reactions.  The kinetics of phosphotransfer reactions can vary dramatically between different pathways and reflect the need to synchronize biological responses (e.g. behavior, development, physiology, virulence) to environmental stimuli.  Member of the Molecular & Cellular Biophysics Training Program.

Braunstein, Miriam email , , , , publications

Our research focuses on understanding the virulence mechanisms of Mycobacterium tuberculosis, the bacterium responsible for the disease tuberculosis.

Brenman, Jay email , , , , , , publications

The Brenman lab studies how a universal energy and stress sensor, AMP-activated protein kinase (AMPK) regulates cellular function and signaling.  AMPK is proposed to be a therapeutic target for Type 2 diabetes and Metabolic syndrome (obesity, insulin resistance, cardiovascular disease). In addition, AMPK can be activated by LKB1, a known human tumor suppressor. Thus AMPK signaling is not only relevant to diabetes but also cancer.  We are interested in molecular genetic and biochemical approaches to understand how AMPK contributes to neurodegeneration, metabolism/cardiac disease and cancer.

Brennwald, Patrick email , , , , , publications

We are interested in the mechanism by which eukaryotic cells are polarized and the role of vesicle transport plays in the determination and regulation of cell polarity and tumorigenesis.

Bultman, Scott email , , , , publications

Our lab is interested in the role of chromatin-modifying factors and epigenetics in mammalian development and disease. We are particularly interested in two major areas both of which make use of mouse models: (1) the role of BRG1 and SWI/SNF nucleosome-remodeling complexes in various aspects of hematopoiesis including regulation of globin gene expression and inflammation; (2) the role of dietary fiber and gut microflora on histone modifications, CpG methylation, and prevention of colorectal cancer.

Burch, Christina email , , , , , publications

Experimental Evolution of Viruses.  We use both computational and experimental approaches to understand how viruses adapt to their host environment.  Our research attempts to determine how genome complexity constrains adaptation, and how virus ecology and genetics interact to determine whether a virus will shift to utilizing new host.  In addition, we are trying to develop a framework for predicting which virus genes will contribute to adaptation in particular ecological scenarios such as frequent co-infection of hosts by multiple virus strains.  For more information, and for advice on applying to graduate school at UNC, check out my lab website www.unc.edu/~cburch/lab.

Calabrese, J. Mauro email , , , , , , , , , publications

Our lab is trying to understand the mechanisms by which long noncoding RNAs orchestrate the epigenetic control of gene expression. Relevant examples of this type of gene regulation occur in the case of X-chromosome inactivation and autosomal imprinting. We specialize in genomics, but rely a combination of techniques —  including genetics, proteomics, and molecular, cell and computational biology — to study these processes in both mouse and human stem and somatic cell systems.

Caron, Kathleen email , , , , , publications

Gene targeting and state-of-the-art phenotyping methods are used to elucidate the reproductive and cardiovascular roles of the adrenomedullin system and to characterize the novel GPCR-signaling mechanism of Adm’s receptor and RAMP’s.

Clemmons, David R email , , , , , , publications

Cross-talk between insulin like growth factor -1 and cell adhesion receptors in the regulation of cardiovascular diseases and complications associated with diabetes.

Conlon, Brian P. email , , , , publications

My lab is focused on the improvement of treatment of chronic bacterial infections. We aim to determine the mechanisms of antibiotic tolerance. Our aim is to understand the physiology of the bacterial cell, primarily Staphylococcus aureus, during infection and how this physiology allows the cell to survive lethal doses of antibiotic. We will use advanced methods such as single cell analysis and Tn-seq to determine the factors that facilitate survival in the antibiotic’s presence. Once we understand this tolerance, we will develop advanced screens to identify novel compounds that can be developed into therapeutics that can kill these drug tolerant “persister” cells and eradicate deep-seated infections.

Conlon, Frank email , , , , , , publications

Our lab is studying the molecular mechanisms which are involved in the induction and proliferation and patterning of cardiac progenitor cell populations. To identify the molecular pathways involved in these processes, we have used Xenopus and mouse as model systems with particular focus on the endogenous role of genes implicated in the early steps of cardiogenesis and human congenital heart disease. Present projects in the lab involve embryological manipulations, tissue explant cultures, molecular screens as well as protein-DNA interaction experiments, biochemistry and promoter analysis.

Cook, Jeanette (Jean) email , , , , , , , publications

The Cook lab studies the major transitions in the cell division cycle and how perturbations in cell cycle control affect genome stability. We have particular interest in mechanisms that control protein abundance and localization at transitions into and out of S phase (DNA replication phase) and into an out of quiescence. We use a variety of molecular biology, cell biology, biochemical, and genetic techniques to manipulate and evaluate human cells as they proliferate or exit the cell cycle. We collaborate with colleagues interested in the interface of cell cycle control with developmental biology, signal transduction, DNA damage responses, and oncogenesis.

Copenhaver, Gregory P. email , , , , , publications

The primary research area my lab is the regulation of meiotic recombination at the genomic level in higher eukaryotes.  Genomic instability and disease states, including cancer, can occur if the cell fails to properly regulate recombination.  We have created novel tools that give our lab an unparalleled ability to find mutants in genes that control recombination. We use a combination of genetics, bioinformatics, computational biology, cell biology and genomics in our investigations.  A second research area in the lab is the role of centromere DNA in chromosome biology.  We welcome undergraduates, graduate students, postdoctoral fellows and visiting scientists to join our team.

Cotter, Peggy email , , , , publications

Dr. Cotter’s research is aimed at understanding molecular mechanisms of bacterial pathogenesis. Using Bordetella species as models, her group is studying the role of virulence gene regulation in respiratory pathogenesis, how virulence factors activate and suppress inflammation in the respiratory tract, and how proteins of the Two Partner Secretion pathway family are secreted to the bacterial surface and into the extracellular environment. A second major project is focused on Burkholderia pseudomallei, an emerging infectious disease and potential biothreat agent. This research is aimed at understanding the role of autotransporter proteins in the ability of this organism to cause disease via the respiratory route.

Crews, Stephen email , , , , , , publications

Research in the lab is focused on a genetic, cellular, and molecular understanding of Drosophila developmental neuroscience, including the following research areas – (1) Neuronal formation and differentiation, (2) Glial formation, migration, and axon-glial interactions, (3) Synaptic connectivity, and (4) Transcriptional regulation.

Dangl, Jeff email , , , , , , , publications

We use the premier model plant species, Arabidopsis thaliana, and real world plant pathogens like the bacteria Pseudomonas syringae and the oomycete Hyaloperonospora parasitica to understand the molecular nature of the plant immune system, the diversity of pathogen virulence systems, and the evolutionary mechanisms that influence plant-pathogen interactions. All of our study organisms are sequenced, making the tools of genomics accessible.

Davis, Ian email , , , , publications

With a particular interest in pediatric solid tumors, our lab aims to develop a mechanistic understanding of the role of aberrant or dysregulated transcription factors in oncogenesis.

Der, Channing email , , , , , , , publications

Our research centers on understanding the molecular basis of human carcinogenesis. In particular, a major focus of our studies is the Ras oncogene and Ras-mediated signal transduction.  The goals of our studies include the delineation of the complex components of Ras signaling and the development of anti-Ras inhibitors for cancer treatment.  Another major focus of our studies involves our validation of the involvement of Ras-related small GTPases (e.g., Ral, Rho) in cancer.  We utilize a broad spectrum of technical approaches that include cell culture and mouse models, C. elegans, protein crystallography, microarray gene expression or proteomics analyses, and clinical trial analyses.

Diaz-Sanchez, David email , , , , publications

The work focuses on how air pollutants affect human health, the role of genetics and epigenetic factors in determining susceptibility and clinical/dietary strategies to mitigate these effects. There is a strong emphasis on translational research projects using a multi-disciplinary approach. Thus, by using human in vivo models (such as clinical studies) we validate in vitro, epidemiology, and animal findings.

Diering, Graham email , , , , publications

Sleep is an essential and evolutionarily conserved process that modifies synapses in the brain to support cognitive functions such as learning and memory. We are interested in understanding the molecular mechanisms of synaptic plasticity with a particular interest in sleep. Using mouse models of human disease as well as primary cultured neurons, we are applying this work to understanding and treating neurodevelopmental disorders including autism and intellectual disability. The lab focuses on biochemistry, pharmacology, animal behavior and genetics.

Duronio, Bob email , , , , , publications

My lab studies how cell proliferation is controlled during animal development, with a focus on the genetic and epigenetic mechanisms that regulate DNA replication and gene expression throughout the cell cycle. Many of the genes and signaling pathways that we study are frequently mutated in human cancers. Our current research efforts are divided into three areas:  1) Plasticity of cell cycle control during development  2) Histone mRNA biosynthesis and nuclear body function  3) Epigenetic control of genome replication and function

Erie, Dorothy email , , , , publications

The research in my lab is divided into two main areas – 1) Atomic force microscopy and fluorescence studies of protein-protein and protein-nucleic acid interactions, and 2) Mechanistic studies of transcription elongation. My research spans the biochemical, biophysical, and analytical regimes.

Errede, Beverly email , , , publications

Yeast molecular genetics; MAP-Kinease activation pathways; regulation of cell differentiation.

Everett, Eric T email , , , , , publications

Our research focuses upon craniofacial and mineralized tissue genetics; gene: environment interactions; mapping of complex traits; normal variation (to the extent that normal variation becomes abnormal); and animal models for oral/dental/craniofacial disorders.

Faber, James E. email , , , , publications

We study mechanisms of formation of the collateral circulation in embryonic and neonatal mice, 2) collateral growth and angiogenesis in models of ischemic disease in adult mice, 3) signaling in collateral endothelial cells, and 4) the genetic and environmental basis for the large variation in collateral vessel formation in the embryo and growth in ischemic disease (see Faber et al Physiol Genom 2007; Circ Res 2008) using genome-wide mapping and expression profiling (QTL, eQTL), consomic and haplotype analyses, plus physiologic, cellular and molecular study of candidate genes. Techniques in addition to those mentioned above include physiologic analysis of mouse models of cerebral, coronary and hindlimb ischemic disease, vascular imaging (angiography, laser Doppler flowmetry, micro-computed tomography), signaling analysis, cell and molecular biology.  We also study adaptive and pathological arterial wall growth and remodeling in the adult. The laboratory collaborates with other groups at UNC and other institutions in the US and elsewhere, providing varied opportunities for professional development.

Franco, Hector L. email , , , , , publications

My lab has a long-standing interest in gene regulation, epigenetics, chromatin and RNA biology, especially as it pertains to cancer. We are interested in studying the formation and function of transcriptional enhancers and the non-coding RNAs that are actively produced at enhancers, known as enhancer RNAs, which are involved in modulating several aspects of gene regulation. In addition, we aim to understand how transcriptional enhancers help orchestrate responses to external stimuli found in the tumor microenvironment. We address these research aims by using an interdisciplinary approach that combines molecular and cellular techniques with powerful genomic and computational approaches.

Frazier-Bowers, Sylvia A. email , , , publications

My research interests include understanding the genetic basis of craniofacial anomalies relevant to the field of orthodontics.  Specifically, I investigate the genetic basis of dentofacial variation in a skeletal (mandibular prognathic) dentofacial phenotype (1-5% prevalence); tooth agenesis (congenitally missing teeth) and primary failure of eruption (a condition marked by the failure of teeth to erupt).  My current efforts focus on gene discovery and phenotype dissection of dentofacial variation using 1) 2 /3 dimensional methods for rigorous clinical characterization, 2) genotyping and linkage analysis and 3) mutational analysis using the candidate gene approach.

Fry, Rebecca email , , publications

The lab focuses on understanding how environmental exposures are associated with human disease with a particular focus on genomic and epigenomic perturbations. Using environmental toxicogenomics and systems biology approaches, we aim to identify key molecular pathways that associate environmental exposure with diseases. A current focus in the lab is to study prenatal exposure to various types of metals including arsenic, cadmium, and lead. We aim to understand molecular mechanisms by which such early exposures are associated with long-term health effects in humans. For example, we are examining DNA methylation (epigenetic) profiles in humans exposed to metals during the prenatal period. This research will enable the identification of gene and epigenetic biomarkers of metal exposure. The identified genes can serve as targets for study to unravel potential molecular bases for metal-induced disease. Ultimately, we aim to identify mechanisms of metal -induced disease and the basis for inter-individual disease susceptibility.

Furey, Terry email , , , , , publications

The Furey Lab is interested in understanding gene regulation processes in specific cell types, especially with respect to complex phenotypes, and the effect of genetic and environmental variation on gene regulation. We have explored these computationally by concentrating on the analysis of genome-wide open chromatin data generated from high-throughput sequencing experiments; and the development of statistical methods and computational tools to investigate underlying genetic and biological mechanisms of complex phenotypes. Our current projects include determining the molecular effects of exposure to 1,3-butadiene, a known carcinogen, on chromatin, gene regulation, and gene expression in lung, liver, and kidney tissues of genetically diverse mouse strains. We are also exploring chromatin, transcriptional, and microbial changes in inflammatory bowel diseases to identify biomarkers of disease onset, severity, and progression.

Gilmore, John email , , , , publications

Dr. Gilmore’s research group is applying state-of–the-art magnetic resonance imaging and image analysis techniques to study human brain development in 0-6 year olds.  Approaches include structural, diffusion tensor, and resting state functional imaging, with a focus on cortical gray and white matter development and its relationship to cognitive development.  Studies include normally developing children, twins, and children at high risk for schizophrenia and bipolar illness.  We also study the contributions of genetic and environmental risk factors to early brain development in humans.  A developing collaborative project with Flavio Frohlich, PhD will use imaging to study white and gray matter development in ferrets and its relationship with cortical oscillatory network development.

Gladfelter, Amy email , , , , , publications

We study large multinucleate cells such as fungi, muscle and placenta to understand how cells are organized in time and space.  Using quantitative live cell microscopy, biochemical reconstitution and computational approaches we examine how the physical properties of molecules generate spatial patterning of cytosol and scaling of cytoskeleton scaffolds in the cell cycle.

Goldman, William email , , , , publications

Successful respiratory pathogens must be able to respond swiftly to a wide array of sophisticated defense mechanisms in the mammalian lung.  In histoplasmosis, macrophages — a first line of defense in the lower respiratory tract — are effectively parasitized by Histoplasma capsulatum.  We are studying this process by focusing on virulence factors produced as this “dimorphic” fungus undergoes a temperature-triggered conversion from a saprophytic mold form to a parasitic yeast form.  Yersinia pestis also displays two temperature-regulated lifestyles, depending on whether it is colonizing a flea or mammalian host.  Inhalation by humans leads to a rapid and overwhelming disease, and we are trying to understand the development of pneumonic plague by studying genes that are activated during the stages of pulmonary colonization.

Goldstein, Bob email , , , , , , publications

We address fundamental issues in cell and developmental biology, issues such as how cells move to specific positions, how the orientations of cell divisions are determined, how the mitotic spindle is positioned in cells, and how cells respond to cell signaling – for example Wnt signaling, which is important in development and in cancer biology. We are committed to applying whatever methods are required to answer important questions. As a result, we use diverse methods, including methods of cell biology, developmental biology, forward and reverse genetics including RNAi, biochemistry, biophysics, mathematical and computational modeling and simulations, molecular biology, and live microscopy of cells and of the dynamic components of the cytoskeleton – microfilaments, microtubules, and motor proteins. Most experiments in the lab use C. elegans embryos, and we have also used Drosophila and Xenopus recently. C. elegans is valuable as a model system because of the possibility of combining the diverse techniques above to answer a wide array of interesting questions. We also have a project underway to develop a new model system for studying how cellular and developmental mechanisms evolve, using little-studied organisms called water bears. Rotating graduate students learn to master existing techniques, and students who join the lab typically grow their rotation projects into larger, long term projects, and/or develop creative, new projects.

Gordon-Larsen, Penny email , , , , publications

Gordon-Larsen’s work integrates biology, behavior, and environment to understand, prevent and treat obesity, cardiovascular and cardiometabolic diseases. She works with biomarker, microbiome, metabolome, genetic, weight, diet, and environment data using multilevel modeling and pathway-based analyses. She works with several longitudinal cohorts that span more than 30 years. Most of her work uses data from the US and China. Her research teams include a wide variety of scientists working in areas such as genetics, medicine, bioinformatics, biostatistics, microbiology, nutrition, and epidemiology.

Grant, Sarah email , , , , , publications

Our research goal is to understand how bacterial pathogens cause disease on their hosts. We are working with a plant pathogen, Pseudomonas syringae which introduces virulence proteins into host cells to suppress immune responses. Our laboratory collaborates with Jeff Dangl’s lab in the UNC Biology Department using genomics approaches to identify P. syringae virulence proteins and to discover how they alter plant cell biology to evade the plant immune system and cause disease.

Gray, Steven email , , , , publications

My core expertise is in adeno-associated virus (AAV) gene therapy vector engineering, followed by optimizing approaches to deliver a gene to the central and peripheral nervous system.  As reagents have been developed to achieve global and efficient nervous system gene transfer, my research focus has also included preclinical studies to apply these reagents toward the treatment of neurological and ocular diseases.  Currently these include Rett Syndrome, Giant Axonal Neuropathy, Tay-Sachs, Krabbe, Batten Disease (INCL and LINCL), and AGU.  My ongoing research focuses on 1) continued development and optimization of AAV vectors specifically tailored toward neurologic and ophthalmologic disorders 2) testing novel gene therapy approaches for applicable disorders, and 3) facilitating the translation of these approaches from bench to clinic.

I am a member of the UNC Gene Therapy Center, Carolina Institute for Developmental Disabilities, and Department of Ophthalmology.  My lab has several strong partnerships with patient and rare disease advocacy groups. A major accomplishment from my lab is that we independently developed a gene therapy approach to treat Giant Axonal Neuropathy, which is in clinical testing at the NIH Clinical Center (https://clinicaltrials.gov/ct2/show/NCT02362438).

Gupton, Stephanie email , , , , , , , publications

During cell shape change and motility, a dynamic cytoskeleton produces the force to initiate plasma membrane protrusion, while vesicle trafficking supplies phospholipids and membrane proteins to the expanding plasma membrane. Extracellular cues activate intracellular signaling pathways to elicit specific cell shape changes and motility responses through coordinated cytoskeletal dynamics and vesicle trafficking. In my lab we are investigating the role of two ubiquitin ligases, TRIM9 and TRIM67, in the cell shape changes that occur during neuronal development. We utilize a variety techniques including high resolution live cell microscopy, gene disruption, mouse models, and biochemistry to understand the complex coordination of cytoskeletal dynamics and membrane trafficking driving neuronal shape change and growth cone motility in primary neurons.

Hammond, Scott email , , , , , publications

My lab studies a gene silencing phenomenon called RNA interference, or RNAi.  We are interested in the role of RNAi in regulating endogenous genes, particularly those involved in cancer progression pathways.

Heise, Mark email , , , , , publications

We study alphavirus infection to model virus-induced disease.  Projects include 1) mapping viral determinants involved in encephalitis, and 2) using a mouse model of virus-induced arthritis to identify viral and host factors associated with disease.

Hige, Toshi email , , , , , publications

[MOVING TO UNC-CH IN JANUARY 2018] Flexibility of the brain allows the same sensory cue to have very different meaning to the animal depending on past experience (i.e. learning and memory) or current context. Our goal is to understand this process at the levels of synaptic plasticity, neural circuit and behavior. Our model system is a simple brain of the fruit fly, Drosophila. We employ in vivo electrophysiology and two-photon calcium imaging together with genetic circuit manipulation. Taking advantage of this unique combination, we aim to find important circuit principles that are shared with vertebrate systems.

 

Hirsch, Matthew email , , , , , publications

Our lab works with adeno-associated viral vectors for both the characterization of vector and host responses upon transduction and as therapeutic agents for the treatment of genetic diseases.  In particular, we tend to focus on the 145 nucleotide viral inverted terminal repeats of the transgenic genome and their multiple functions including the replication initiation, inherent promoter activity, and stimulation of intra/inter molecular DNA repair pathways.  The modification of the AAV ITRs by synthetic sequences imparts unique functions/activities rendering these synthetic vectors perhaps better suited for therapeutic applications.

Ideraabdullah, Folami Y email , , , , publications

The lab focus is to understand the mechanism of gene-environment interactions by examining the genetic basis of epigenetic response to nutrition and environmental toxicants. The long-term goal is to identify and characterize genetic (naturally occurring and induced) and environmental (toxicant and nutritional) causes of disruption of DNA methylation patterns during development and to determine their role in disease. The primary focus is on DNA methylation patterns during germ cell and early embryonic development during critical windows of epigenetic reprogramming.

Jones, Alan email , , , , , , , publications

The Jones lab is interested in heterotrimeric G protein-coupled signaling and uses genetic model systems to dissect signaling networks.  The G-protein complex serves as the nexus between cell surface receptors and various downstream enzymes that ultimately alter cell behavior. Metazoans have a hopelessly complex repertoire of G-protein complexes and cell surface receptors so we turned to the reference plant, Arabidopsis thaliana, and the yeast, Saccharomyces cerevisiae, as our models because these two organisms have only two potential G protein complexes and few cell surface receptors.  Their simplicity and the ability to genetically manipulate genes in these organisms make them powerful tools.  We use a variety of cell biology approaches, sophisticated imaging techniques, 3-D protein structure analyses, forward and reverse genetic approaches, and biochemistries.

Jones, Corbin email , , , , , , publications

The goal of my research is to identify, clone, and characterize the evolution of genes underlying natural adaptations in order to determine the types of genes involved, how many and what types of genetic changes occurred, and the evolutionary history of these changes. Specific areas of research include: 1) Genetic analyses of adaptations and interspecific differences in Drosophila, 2) Molecular evolution and population genetics of new genes and 3) Evolutionary analysis of QTL and genomic data.

Juliano, Jonathan email , , , , publications

Despite recent success in reducing malaria transmission, the estimated annual numbers of malaria infections (~225 million) and deaths (~781,000) remain high. Despite this immense burden, our understanding of the genetic diversity of malaria and the factors that promote this diversity is limited.  This diversity among plasmodial parasites has a critical impact on many factors involved in the control of infections, including: 1) development of drug resistance, 2) development of naturally acquired immunity, and 3) vaccine design.  My laboratory’s primary interests are: 1) describing the genetic diversity of P. falciparum using molecular biological and next generation sequencing tools, and 2) using these data to understand the evolutionary and ecological factors that drive this diversity, promote the emergence of drug resistance and affect our ability to effectively develop immunity.

Kafri, Tal email , , , , publications

Our lab is focused on the development of HIV-1 vectors for gene therapy of genetic disease.  In addition, we are using the vector system to study HIV-1 biology.  We are also interested in utilizing the HIV-1 vector system for functional genomics.

Kakoki, Masao email , publications

My research aims at prevention and treatment of cardiovascular diseases and focuses on the identification of genes that confer susceptibility or resistance to the diseases with the use of genetically engineered mice. In collaboration with Dr.Oliver Smithies, I very recently developed a new method for altering gene expression by modifying 3’ untranslated regions in mice which enables fine-tuned modification of gene expression. I am now analyzing the phenotypes of several mouse models generated with this method.

Kelada, Samir email , , , , , publications

While both genes and environment are thought to influence human health, most investigations of complex disease only examine one of these risk factors in isolation.  Accounting for both types of risk factors and their complex interactions allows for a more holistic view of complex disease causation.  The Kelada lab is focused on the identification and characterization of these gene-environment interactions in airway diseases, particularly asthma, a disorder of major public health importance.   /  / Additionally, to gain insight into how the airway responds to relevant exposures (e.g., allergens or pathogens), we study gene expression in the lung (particularly airway epithelia). Our goal is identify the genetic determinants of gene expression by measuring gene expression across many individuals (genotypes). / This “systems genetics” approach allows us to identify master regulators of gene expression that may underlie disease susceptibility or represent novel therapeutic targets. /

Kieber, Joe email , , , , , publications

Hormones influence virtually every aspect of plant growth and development. My lab is examining the molecular mechanisms controlling the biosynthesis and signal transduction of the phytohormones cytokinin and ethylene, and the roles that these hormones play in various aspects of development. We employ genetic, molecular, biochemical, and genomic approaches using the model species Arabidopsis to elucidate these pathways.

Kim, William Y email , , , , , publications

Our research explores the role of hypoxia-inducible factor (HIF) in tumorigenesis. HIF is a transcription factor that plays a key role in oxygen sensing, the adaptation to hypoxia and the tumor microenvironment. It is expressed in the majority of solid tumors and correlates with poor clinical outcome. Therefore, HIF is a likely promoter of solid tumor growth and angiogenesis.  Our lab uses mouse models to ask if and how HIF cooperates with other oncogenic events in cancer.  We are currently investigating HIF’s role in the upregulation of circulating tumor cells and circulating endothelial cells.

Kleeberger, Steven email , , , , publications

Genetic determinants of environmental lung diseases.

Knickmeyer Santelli, Rebecca email , , , , publications

Dr. Knickmeyer Santelli’s lab seeks to advance our understanding of neurodevelopmental disorders through the integration of pediatric neuroimaging with genetic, endocrine, and behavioral methodologies. In particular, her research explores the role which common and rare genetic variation plays in explaining individual differences in neurodevelopment during infancy and early childhood and investigates the mechanisms which modulate differential vulnerability to and expression of neurodevelopment disorders in each sex. She is also using MRI to evaluate the effects of prenatal exposure to antidepressants and to understand how microbial colonization of the gut impacts human brain development and anxiety.

Koller, Beverly email , publications

We have used gene targeting to generate an animal model for the most common genetic disease in the Caucasian population, cystic fibrosis. We are continuing to characterize this animal and to modify it to produce a disease that more closely resembles human cystic fibrosis. A second area in which our lab is interested involves the study of the inflammatory processes involved in allergic responses, asthma, and arthritis. Our current efforts are aimed at generating animals deficient in various factors that are believed to be important in these diseases. By providing us with a better understanding of the immunological processes that underlie allergic responses, asthma and arthritis, these animals should help us to identify more effective treatments for these diseases.

Li, Yun email , , publications

The Yun Li group develops statistical methods and computational tools for modern genetic, genomic, and epigenomic data. We do both method development and real data applications. The actual projects in the lab vary from year to year because I am motivated by real data problems, and genomics is arguably (few people argue with me though) THE most fascinating field with new types and huge amount of data generated at a pace more than what we can currently deal with.

Liu, Jiandong email , , , , , publications

Congenital heart diseases are one of the most common birth defects in humans, and these arise from developmental defects during embryogenesis.  Many of these diseases have a genetic component, but they might also be affected by environmental factors such as mechanical forces. The Liu Lab combines genetics, molecular and cell biology to study cardiac development and function, focusing on the molecular mechanisms that link mechanical forces and genetic factors to the morphogenesis of the heart.  Our studies using zebrafish as a model system serve as the basic foundation to address the key questions in cardiac development and function, and could provide novel therapeutic interventions for cardiac diseases.

Maeda, Nobuyo N. email , , , , , , , publications

Our research is focused on the genetics and molecular pathology of complex multi-factorial conditions in humans – obesity, diabetes, hypercholesterolemia, insulin resistance, and hypertension.  These conditions underlie cardiovascular diseases, including atherosclerosis, the major cause of death and disabilities in North America. Our approach consists of experiments with mice carrying modifications in various genes important for the maintenance of vascular function, antioxidant defense, and metabolism.  We dissect how gene-gene and gene-environment interaction influences the pathogenesis of these common human conditions and their complications.

Magness, Scott email , , , , publications

The primary focus of my research is to understand the genetic mechanisms underlying stem cell maintenance and differentiation with the goal of translating this information into therapeutic strategies. Using a Sox9EGFP mouse model and FACSorting we are able to specifically enrich for single multipotent intestinal epithelial stem cells that are able to generate mini-guts in a culture system. Our studies are now focused on manipulating, in vitro, the genetics of stem cell behavior through viral gene therapeutics and pharmacologic agents. Additionally, we are developing stem cell transplantation and tissue engineering strategies as therapies for inborn genetic disorders as well as damage and disease of the intestine. Using novel animal models and tissue microarrays from human colon cancers, we are investigating the role of Sox-factors in colorectal cancer.

Magnuson, Terry email , , , , , publications

The Magnuson Lab works in three areas – (i) Novel approaches to allelic series of genomic modifications in mammals, (ii)Mammalian polycomb-group complexes and development, (iii) Mammalian Swi/Snf chromatin remodeling complexes

Marzluff, William email , , , , , , , , , publications

We are interested in the mechanisms by which histone protein synthesis is coupled to DNA replication, both in mammalian cell cycle and during early embryogenesis in Drosophila, Xenopus and sea urchins.

Matera, Greg email , , , , , , , publications

Research in our laboratory is focused on RNA. We aim to understand how ribonucleoprotein particles (snRNPs, mRNPs, etc.) are transcribed, packaged and transported to their final destinations in the cell.  We are also interested in the genetic and epigenetic forces that direct formation of microscopically visible subcellular structures (e.g. nuclear bodies). We use a combination of approaches, including Drosophila genetics, molecular cell biology, biochemistry, digital imaging microscopy and genome-wide analyses. Projects in the lab are focused on two areas:  models of a neurogenetic disease called Spinal Muscular Atrophy (SMA) and the functional analysis of post-translational modifications of chromatin and RNA-binding proteins important in cancer and other diseases.

Matson, Steven email , , , , publications

Research in our laboratory is focused on the enzymatic mechanisms and biological roles of DNA helicases which convert duplex DNA to ssDNA for use as a template in DNA replication and repair or as a substrate in recombination.  Defects in genes encoding DNA helicases have been linked to genomic instability leading to a variety of progeriod disorders and human cancers. Our long-range goal is to understand the mechanism of action of helicases and to define their roles in DNA metabolism. The lab also has an interest in the process of DNA transfer by bacterial conjugation – the unidirectional and horizontal transmission of genetic information from one cell to another. Conjugative DNA transfer plays a role in increasing genetic diversity in addition to propagating the spread of antibiotic resistance and microbial virulence factors. Our long-range goal is to define the function and regulation of the relaxosome, and each protein in this nucleoprotein complex, in conjugative DNA transfer.

McCarthy, Ken email , , , , , publications

Investigating the role of astrocyte signaling in brain function.

McKay, Daniel email , , , , , , publications

Research in the lab focuses on how a single genome gives rise to a variety of cell types and body parts during development. We use Drosophila as a model organism to investigate (1) how transcription factors access DNA to regulate complex patterns of gene expression, and (2) how post-translational modification of histones contributes to maintenance of gene expression programs over time. We combine genomic approaches (e.g. chromatin immunoprecipitation followed by high-throughput sequencing) with Drosophila genetics and transgenesis to address both of these questions. Defects in cell fate specification and maintenance of cell identity often occur in human diseases, including cancer.

Miller, C. Ryan email , , , , , , , , , , publications

My laboratory studies diffuse gliomas, devastating primary tumors of the central nervous system for which few effective drugs are currently available.  We utilize genetically engineered mice, cell culture, and human tumor model systems to explore the molecular pathogenesis of gliomas.  We utilize animal model systems to develop drugs and diagnostic markers for their individualized therapy.  Rotating students gain experience with multiple techniques, including cell culture, molecular biology, genomics, genetic lineage tracing, fluorescence microscopy, and digital image analysis.

Miller, Virginia L email , , , publications

Molecular genetic analysis of virulence of Yersinia and Klebsiella: My laboratory uses Yersinia enterocolitica, Y. pestis, and Klebsiella as model systems to study bacterial pathogenesis. The long-term goals of our work are to understand the bacteria-host interaction at the molecular level to learn how this interaction affects the pathogenesis of infections and to understand how these pathogens co-ordinate the expression of virulence determinants during an infection. To do this we use genetic, molecular and immunological approaches in conjunction with the mouse model of infection.

Mohlke, Karen email , , , , , publications

We identify genetic variants that influence common human traits with complex inheritance patterns, and we examine the molecular and biological mechanisms of the identified variants and the genes they affect. Currently we are investigating susceptibility to type 2 diabetes and obesity, and variation in cholesterol levels, body size, body shape, and metabolic traits. We detect allelic differences in chromatin structure and gene expression and examine gene function in human cell lines and tissues. In addition to examining the primary effects of genes, the lab is exploring the interaction of genes with environmental risk factors in disease pathogenesis. Approaches include genome-wide association studies, molecular biology, cell biology, genetic epidemiology, sequencing, and bioinformatic analysis of genome-wide data sets.

Nimchuk, Zachary email , , , , , , publications

Understanding how cells communicate and co-ordinate during development is a universal question in biology. My lab studies the cell to cell signaling systems that control plant stem cell production.  Plants contain discrete populations of self-renewing stem cells that give rise to the diverse differentiated cell types found throughout the plant.  Stem cell function is therefore ultimately responsible for the aesthetic and economic benefits plants provide us. Stem cell maintenance is controlled by overlapping receptor kinases that sense peptide ligands. Receptor kinase pathways also integrate with hormone signaling in a complex manner to modulate stem cell function.  My lab uses multiple approaches to dissect these networks including; genetics, genomics, CRISPR/Cas9 genome editing, live tissue imaging, and cell biological and biochemical methods.  This integrated approach allows us to gain an understanding of the different levels at which regulatory networks act and how they contribute to changes in form and function during evolution.

Nylander-French, Leena email , , publications

My research focuses on understanding the relationship between dermal and inhalation exposure and the effect of individual genetic differences on the function of enzymes that detoxify hazardous agents and that affect the development of disease. My research group has pioneered approaches to quantitatively measure skin and inhalation exposures to toxicants; additionally, my group has developed sophisticated exposure modeling tools using mathematical and statistical principles in an effort to standardize and improve exposure and risk assessment.

Ostrowski, Lawrence E email , , , publications

The overall focus of research in my laboratory is to improve the diagnosis and treatment of airway diseases, especially those that result from impaired mucociliary clearance. In particular, our efforts focus on the diseases cystic fibrosis and primary ciliary dyskinesia, two diseases caused by genetic mutations that impair mucociliary clearance and lead to recurrent lung infections. The work in our laboratory ranges from basic studies of ciliated cells and the proteins that make up the complex structure of the motile cilia, to translational studies of new drugs and gene therapy vectors. We use a number of model systems, including traditional and inducible animal models, in vitro culture of differentiated mouse and human airway epithelial cells, and direct studies of human tissues. We also use a wide range of experimental techniques, from studies of RNA expression and proteomics to measuring ciliary activity in cultured cells and whole animals.

Pardo-Manuel de Villena, Fernando email , , , , , , publications

Non-Mendelian genetics including, meiotic drive, parent-of-orifin effects and allelic exclusion.

Parker, Joel email , , , publications

Our research is focused in the methodological development and integrated analysis of high throughput genetic and genomic studies. I previously lead the development of algorithms and content resulting in ProsignaTM, the only CE marked and FDA 510(k) cleared breast cancer diagnostic assay for FFPE tissue. We are currently involved in similar diagnostic development in multiple clinical trials where genomics are modeled to predict clinical outcomes in cancer.

 

In a separate role, I currently direct the sequencing, microarray, and other genomics analysis in the Bioinformatics Shared Resource at the Lineberger Comprehensive Cancer Center. The Bioinformatics Shared Resource provides consultation and analytical services primarily for the Cancer Center, but is also involved in collaborations across multiple departments and institutions. This role has brought a number of opportunities for technology development, primarily for sequencing data analysis. Here we are continuously developing algorithms and software to maximize the information content from novel sequencing assays.

Peifer, Mark email , , , , , , , publications

Cell adhesion, signal transduction, and cytoskeletal regulation during embryogenesis and in cancer.  We focus on the regulation of cadherin-based cell-cell adhesion, and on Wnt signaling and its regulation by the tumor suppressor APC.

Perou, Charles M. email , , , , , , , publications

The focus of my lab is to characterize the biological diversity of human tumors using genomics, genetics, and cell biology, and then to use this information to develop improved treatments that are specific for each tumor subtype and for each patient. A significant contribution of ours towards the goal of personalized medicine has been in the genomic characterization of human breast tumors, which identified the Intrinsic Subtypes of Breast Cancer. We study many human solid tumor disease types using multiple experimental approaches including RNA-sequencing (RNA-seq), DNA exome sequencing, Whole Genome Sequencing, cell/tissue culturing, and Proteomics, with a particular focus on the Basal-like/Triple Negative Breast Cancer subtype. In addition, we are mimicking these human tumor alterations in Genetically Engineered Mouse Models, and using primary tumor Patient-Derived Xenografts, to investigate the efficacy of new drugs and new drug combinations. All of these genomic and genetic studies generate large volumes of data; thus, a significant portion of my lab is devoted to using genomic data and a systems biology approach to create computational predictors of complex cancer phenotypes.

Qian, Li email , , , , , publications

Our laboratory is interested in developing innovative approaches to regenerate or repair an injured heart. Our goal is to understand the molecular basis of cardiomyocyte specification and maturation and apply this knowledge to improve efficiency and clinical applicability of cellular reprogramming in heart disease. To achieve these goals, we utilize in vivo modeling of cardiac disease in the mouse, including myocardial infarction (MI), cardiac hypertrophy, chronic heart failure and congenital heart disease (CHD). In addition, we take advantage of traditional mouse genetics, cell and molecular biology, biochemistry and newly developed reprogramming technologies (iPSC and iCM) to investigate the fundamental events underlying the progression of various cardiovascular diseases as well as to discover the basic mechanisms of cell reprogramming.

Ramsden, Dale email , , , , , publications

The end joining pathway is a major means for repairing chromosome breaks in vertebrates.  My lab is using cellular and cell-free models to learn how end joining works, and what happens when it doesn’t.

Reed, Jason email , , , , , publications

Regulation of plant development:  We use techniques of genetics, molecular biology, microscopy, physiology, and biochemistry to study how endogenous developmental programs and exogenous signals cooperate to determine plant form.  The model plant Arabidopsis thaliana has numerous technical advantages that allow rapid experimental progress.  We focus on how the plant hormone auxin acts in several different developmental contexts.  Among questions of current interest are i) how auxin regulates patterning in embryos and ovules, ii) how light modifies auxin response, iii) how feedback loops affect kinetics or patterning of auxin response, iv) how flower opening and pollination are regulated, and v) whether natural variation in flower development affects rates of self-pollination vs. outcrossing.

Reid, Lola email , , , publications

Two dynamically interacting sets of mechanisms govern tissue-specific gene expression and cell growth. 1) mechanisms in lineage biology regulate stem cells and their descendents, processes that define the repertoire of genes available to be regulated and 2) signal transduction mechanisms, induced by the synergistic effects of extracellular matrix components and soluble signals (hormones, growth factors), regulate the expression of the available genes. Studies in the lab focus on both classes of mechanisms in normal versus neoplastic tissue.

Samulski, Jude email , , , , , publications

We are engaged in studying the molecular biology of the human parvovirus adeno-associated virus (AAV) with the intent to using this virus for developing a novel, safe, and efficient delivery system for human gene therapy.

Sartor, R. Balfour email , , , , publications

Our long term goals are to better define mechanisms of chronic intestinal inflammation and to identify areas for therapeutic intervention. Research in our laboratories is in the following four general areas: 1) Induction and perpetuation of chronic intestinal and extraintestinal inflammation by resident intestinal bacteria and their cell wall polymers, 2) Mechanisms of genetically determined host susceptibility to bacterial product,. 3) Regulation of immunosuppressive molecules in intestinal epithelial cells and 4) Performing clinical trials of novel therapeutic agents in inflammatory bowel disease patients.

Searles, Lillie L. email , , publications

My lab is interested in mechanisms that (1) fine tune gene expression and (2) coordinate transcription and RNA processing in eukaryotes. Our work is based on molecular, genetic and biochemical analysis of the suppressor of sable gene of Drosophila.

Sekelsky, Jeff email , , , , publications

Genome instability is a major cause of cancer. We use the model organism Drosophila melanogaster to study maintenance of genome stability, including DNA double-strand break repair, meiotic and mitotic recombination, and characterization of fragile sites in the genome.  Our primary approaches are genetic (forward and reverse, transmission and molecular), but we are also using biochemistry to study protein complexes of interest, genomics to identify fragile sites and understand the regulation of meiotic recombination, fluorescence and electron microscopy for analysis of mutant phenotypes, and cell culture for experiments using RNA interference.

Shiau, Celia email , , , , , , , publications

The Shiau Lab is integrating in vivo imaging, genetics, genome editing, functional genomics, bioinformatics, and cell biology to uncover and understand innate immune functions in development and disease. From single genes to individual cells to whole organism, we are using the vertebrate zebrafish model to reveal and connect mechanisms at multiple scales. Of particular interest are 1) the genetic regulation of macrophage activation to prevent inappropriate inflammatory and autoimmune conditions, and 2) how different tissue-resident macrophages impact vertebrate development and homeostasis particularly in the brain and gut, such as the role of microglia in brain development and animal behavior.

Strahl, Brian D. email , , , , , publications

Our laboratory is examining the role of histone post-translational modifications in chromatin structure and function.  Using a combination of molecular biology, genetics and biochemistry, we are determining how a number of modifications to the histone tails (e.g. acetylation, phosphorylation, methylation and ubiquitylation) contribute to the control of gene transcription, DNA repair and replication.

Su, Lishan email , , , , , , , publications

Major areas of research: 1) HIV-1 Virology, Immuno-Pathology and Immuno-Therapy, 2) HBV Virology, Immuno-Pathology and Immuno-Therapy, 3) Novel Immune Therapeutics Including Adjuvants and Vaccines, and 4) Humanized Mouse Models of Human Liver and Immune System.  My laboratory studies both virology and immunology of HIV-1 and HBV persistent infection.  We focus on defining viral factors that counteract host innate anti-viral immunity.  We have also developed humanized mouse models to study human immuno-pathology of chronic HIV-1 and HBV infection in vivo.  We investigate how human immune cells are dysregulated and contribute to diseases during HIV-1 and HBV persistent infection.  We are currently focused on the HIV-1/pDC/IFN-I axis that plays a critical role in HIV-1 persistence and AIDS, and on the HBV/Macrophage interaction in liver diseases.  In addition, we are developing novel immune modulatory therapeutics including antibodies, adjuvants and vaccines.

Su, Maureen A email , , , publications

Our lab is interested in understanding the genetics of autoimmunity using both mouse models and patient samples. Our work is highly translational and aims to have direct relevance to human disease. One of our approaches is to study rare Mendelian autoimmunity syndromes in order to determine the contributions of a particular gene to developing autoimmunity. We have focused on Autoimmune Polyendocrinopathy Syndrome Type 1 (APS1 or APECED), a rare condition due to mutations in the Autoimmune Regulator (Aire) gene. We are interested in how Aire promotes tolerance and have utilized both APS1 mouse models and patient samples to study this disease. We are also interested in understanding how dysregulation of the immune system results in Type 1 Diabetes Mellitus, an autoimmune disease in which beta cells in pancreatic islets are destroyed. We are primarily using patient samples to study how the balance of suppressor of effector arms of the immune system become dysregulated.

Sullivan, Patrick email , , , , , publications

I study complex traits using linkage, association, and genetic epidemiological approaches.  Disorders include schizophrenia (etiology and pharmacogenetics), smoking behavior, and chronic fatigue.

Swanstrom, Ronald email , , , , , , publications

First, we study the complex HIV-1 population that exists within a person.  We use this complexity to ask questions about viral evolution, transmission, compartmentalization, and pathogenesis.  Second, we are exploring the impact of drug resistance on viral fitness and identifying new drug targets in the viral protein processing pathway.  Third, we participate in a collaborative effort to develop an HIV-1 vaccine.  Fourth, we are using mutagenesis to determine the role of RNA secondary structure in viral replication.

Tarantino, Lisa M. email , , , , , , , , publications

The Tarantino lab studies addiction and anxiety-related behaviors in mouse models using forward genetic approaches. We are currently studying a chemically-induced mutation in a splice donor site that results in increased novelty- and cocaine-induced locomotor activity and prolonged stress response. We are using RNA-seq to identify splice variants in the brain that differ between mutant and wildtype animals. We are also using measures of initial sensitivity to cocaine in dozens of inbred mouse strains to understand the genetics, biology and pharmacokinetics of acute cocaine response and how initial sensitivity might be related to addiction. Finally, we have just started a project aimed at studying the effects of perinatal exposure to dietary deficiencies on anxiety, depression and stress behaviors in adult offspring. This study utilizes RNA-seq and a unique breeding design to identify parent of origin effects on behavior and gene expression in response to perinatal diet.

Taylor, Joan M. email , , , , , publications

The goal of our research is to identify signaling mechanisms that contribute to normal and pathophysiological cell growth in the cardiovascular system.  We study cardiac and vascular development as well as heart failure and atherosclerosis.

Ting, Jenny email , , , , , , , , , , publications

Topics include gene discovery, genomics/proteomics, gene transcription, signal transduction, molecular immunology.  Disease relevant issues include infectious diseases, autoimmune and demyelinating disorders, cancer chemotherapy, gene linkage.

Valdar, William email , , , , publications

We are a quantitative genetics lab interested the relationship between genes and complex disease. Most of our work focuses on developing statistical and computational techniques for the design and analysis of genetic experiments in animal models. This includes, for example: Bayesian hierarchical modeling of gene by drug effects in crosses of inbred mouse strains; statistical methods for identifying quantitative trait loci (QTL) in a variety of experimental mouse populations (including the Collaborative Cross); computational methods for optimal design of studies on parent of origin effects; modeling of diet by gene by parentage interactions that affecting psychiatric disease; detection and estimation of genetic effects on phenotypic variability. For more information, visit the lab website.

Voruganti, Saroja email , , publications

My research interests are focused on understanding the effects of genetic and environmental factors and their interaction on complex human diseases using a combination of statistical, molecular and bioinformatics approaches. My specific interests include understanding the influence of genetic variants on serum uric acid levels (a biomarker for renal-cardiovascular disease), effect of gene by diet interactions on serum uric acid levels and associated renal-cardiovascular disease risk factors and identification of functional variants affecting these disorders that will lead to novel treatment options.

Wan, Yisong email , , , , publications

We are a molecular genetics laboratory studying immune functions by using mouse models. The focus of our research is to investigate the molecular mechanisms of immune responses under normal and pathological conditions. Our goal is to find therapies for various human immune disorders, such as autoimmunity (type 1 diabetes and multiple sclerosis), tumor and cancer, and inflammatory diseases (inflammatory bowel disease, asthma and arthritis).

Weissman, Bernard E. email , , , , , publications

How the loss of different components of the SWI/SNF complex contributes to neoplastic transformation remains an open and important question. My laboratory concentrates on addressing this question by the combined use of biological, biochemical and mouse models for SWI/SNF complex function.

Willett, Christopher email , , , , publications

My lab concentrates on studying the molecular genetic basis of the evolutionary processes of adaptation and speciation. The questions we ask are what are the sequence changes that lead to variation between species and diversity within species, and what can these changes tell us about the processes that lead to their evolution. We use a number of different techniques to answer these questions, including molecular biology, sequence analyses (i.e. population genetics and molecular evolution techniques), physiological studies, and examinations of whole-organism fitness. Currently work in the lab has focused on a intertidal copepod species that is an excellent model for the initial stages of speciation (and also provides opportunities to study how populations of this species adapt to their physical environment).

Williams, Scott E. email , , , , , , , , publications

Divisions and decisions in development and disease. The mammalian skin epithelium is an ideal model system to study fundamental questions in stem cell and cancer biology. It is accessible; it can be cultured, genetically manipulated and transplanted; and its resident stem cells possess unparalleled regenerative capacity. Our skin, unlike many other organs, undergoes continuous growth and turnover. In development and homeostasis, progenitors in the skin must balance self-renewal and differentiation programs. We have found that asymmetric cell divisions are a critical mechanism by which skin progenitors maintain this equilibrium. We are interested in studying how this asymmetry is controlled at a molecular level, and how division orientation impacts cell fate choices in normal and neoplastic growth. To facilitate these and other studies in diverse epithelia, we have developed a powerful functional tool, lentiviral in vivo RNAi, which allows us to rapidly perform functional studies on any gene in the intact mouse in weeks instead of years. Our broad goal will be to use this technique, in combinations of candidate and screening approaches, to dissect pathways that influence stem cell differentiation. I will be joining the Pathology Department in April, 2013 and am seeking passionate, open-minded, and interactive students for the summer and beyond.

Wolfgang, Matthew C. email , , , , , publications

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen responsible for a variety of diseases in individuals with compromised immune function. Dr. Wolfgang’s research focuses on the pathogenesis of Pseudomonas aeruginosa infection.  The goal of his research is to understand how this opportunistic pathogen coordinates the expression of virulence factors in response to the host environment. Projects in his laboratory focus on the regulation of intracellular cyclic AMP, a second messenger signaling molecule that regulates P. aeruginosa virulence. Dr. Wolfgang’s laboratory uses a combination of molecular genetics and biochemical approaches to understand how P. aeruginosa controls the synthesis, degradation and transport of cAMP in response to extracellular cues. Other related projects focus on the regulation and function of P. aeruginosa Type IV pili (TFP). TFP are cAMP regulated surface organelles that are critical for bacterial colonization of human mucosal tissue. In addition, the Wolfgang lab is actively involved in characterizing the lung microbiome of patients with chronic airway diseases and studying the interactions between P. aeruginosa and other bacterial species during mixed infections.

Wright, J. Timothy email , , , , publications

The Wright laboratory research is focused primarily on defining the phenotype and genotype relationships in a variety of craniofacial conditions such as amelogenesis and dentinogenesis imperfecta, ectodermal dysplasias, and the tricho-dento-osseous syndrome.  This is accomplished through a combination of human gene discovery approaches, the use of transgenic mice, and cell culture systems to explore mechanisms that explain genotype-phenotype relationships.  His most recent research includes investigation of the molecular controls of tooth formation as well as gene expression in tumorigenesis involving  odontogenic tumors such as ameloblastomas and keratocystic odontogenic tumors.

Xiao, Xiao email , , , , publications

Xiao lab is interested in molecular medicine, specifically, gene delivery and therapy for various genetic and acquired diseases. The lab genetically engineers a non-pathogenic and defective DNA virus, named adeno-associate virus (AAV). The engineered AAV has all of its own genes gutted and replaced by our own genes of interests. As a result, the 22-nanometer AAV particles now serve as tiny FedEx/UPS trucks to deliver therapeutic genes to a variety of cells, tissues and even the whole body. Besides its superb efficiency, AAV also offers an excellent safety profile. For example, Xiao lab has developed AAV vectors to treat diseases like muscular dystrophies, heart failure, diabetes, arthritis, hepatitis and cancer, etc. A first of its kind gene therapy for Duchenne muscular dystrophy (DMD), a lethal childhood genetic disease, is in a phase I clinical trial.  In addition to gene delivery for therapeutic purposes, AAV can also be used as a powerful tool to study basic biology such as molecular genetics, signal transduction, apoptosis, mechanisms of pathogenesis and even the engineering of animal models. For example, AAV vectors can be used to deliver protein-encoding genes, antisense RNA, small interference RNA (siRNA) or microRNA to tissues like the muscle, heart, liver, pancreas, kidney, lung, brain and spinal cord, etc., to over-express, up-regulate or knockdown a gene or multiple genes for the purposes of dissecting particular molecular pathways, biological functions and immunology consequences and even creating disease models.

Xiong, Yue email , , , , , publications

Using genetic, cell biology, biochemical and proteomic approaches to determine the function and mechanism of – (1) CDK inhibitors in development and tumor suppression, (2) the p53 degradation and transport, and (3) RING family of ubiquitin ligases.

Yeh, Elaine email , , , publications

The site of microtubule attachment to the chromosome is the kinetochore, a complex of over 60 proteins assembled at a specific site on the chromosome, the centromere. Almost every kinetochore protein identified in yeast is conserved through humans and the organization of the kinetochore in yeast may serve as the fundamental unit of attachment. More recently we have become interested in the role of two different classes of ATP binding proteins, cohesions (Smc3, Scc1) and chromatin remodeling factors (Cac1, Hir1, Rdh54) in the structural organization of the kinetochore and their contribution to the fidelity of chromosome segregation.

Zhang, Yanping email , , , , , publications

We employ modern technologies – genomics, proteomics, mouse models, multi-color digital imaging, etc. to study cancer mechanisms. We have made major contributions to our understanding of the tumor suppressor ARF and p53 and the oncoprotein Mdm2.

Zou, Fei email , , publications

My research has been concentrated on the areas of statistical genetics and genomics to investigate the role of genetic variations on complex quantitative traits and diseases. I work primarily in the development, as well as the examination of statistical properties, of theoretical methodologies appropriate for the interpretation of genetic data.

Zylka, Mark J. email , , , , , , , publications

Our research is focused on two general areas:  1. Autism and 2. Pain.  Our autism research is focused on topoisomerases and other transcriptional regulators that were recently linked to autism.  We use genome-wide approaches to better understand how these transcriptional regulators affect gene expression in developing and adult neurons (such as RNA-seq, ChIP-seq, Crispr/Cas9 for knocking out genes).  We also assess how synaptic function is affected, using calcium imaging and electrophysiology.   In addition, we are performing a large RNA-seq screen to identify chemicals and drugs that increase risk for autism.   /  / Our pain research is focused on lipid kinases that regulate pain signaling and sensitization.  This includes work with cultured dorsal root ganglia (DRG) neurons, molecular biology and behavioral models of chronic pain.  We also are working on drug discovery projects, with an eye towards developing new therapeutics for chronic pain.