Faculty Database:
[Research Interest: Chemical Biology]

Filter faculty by:
See All
NameEmailPhd ProgramResearch InterestsPublications
Asokan, Aravind email , , , , , publications

Our research group is focused on combining the tools and principles of molecular biology and genetics with chemistry to generate a synthetic viral toolkit. The lab-derived synthetic viral entities are utilized to dissect mechanisms of viral tissue tropism, as new reagents for applications in genomics and proteomics and as new vectors for human gene therapy applications.

Bowers, Albert A email , , , , publications

Research in the Bowers lab focuses on investigation of structure activity relationships and mechanisms of action of natural product-derived small molecule therapeutics.  We employ a variety of methods to build and modify compounds of interest, including manipulation of natural product biosynthesis, chemical synthesis, and semi-synthesis.  One major area of research in the lab is the rationale engineering of biosynthetic pathways to make bacterial drug factories.  Compounds targeting transcriptional regulation of cancer as well as multi-drug resistant venereal infections are currently under investigation in the lab.

Brustad, Eric M email , , , publications

The Brustad group is interested in applying chemical principles to expand biological systems beyond Nature’s design. We make use of developing technologies such as unnatural amino acid mutagenesis and non-natural cofactor design to increase the chemical functionality available to proteins. Current efforts are directed towards the genetic incorporation of organocofactor mimics as well as heme protein engineering through the incorporation of orthogonal metalloporphyrin scaffolds. We combine methods in synthetic chemistry, molecular biology, X-ray crystallography, and directed evolution to optimize the function of our protein engineering efforts.

Gilmour, M Ian email , , , , publications

Dr M Ian Gilmour is a Principal Investigator at the National Health and Environmental Effects Research Laboratory (NHEERL), U.S Environmental Protection Agency in RTP.    He received an Honors degree in microbiology from the University of Glasgow, and a doctorate in aerosol science and mucosal immunology from the University of Bristol in 1988.  After post-doctoral work at the John Hopkins School of Public Health and the U.S. EPA, he became a Research Associate in the Center for Environmental Medicine at the University of North Carolina. In 1998 he joined the EPA fellowship program and in 2000 became a permanent staff member.  He holds adjunct faculty positions with the UNC School of Public Health and the Curriculum in Toxicology, and at NC State Veterinary School.  He has published over 80 research articles in the field of pulmonary immunobiology where his research focuses on the interaction between air pollutant exposure and the development of infectious and allergic lung disease.

Hahn, Klaus email , , , , , , , , , publications

Dynamic control of signaling networks in living cells; Rho family and MAPK networks in motility and network plasticity; new tools to study protein activity in living cells (i.e., biosensors, protein photomanipulation, microscopy). Member of the Molecular & Cellular Biophysics Training Program and the Medicinal Chemistry Program.

Hathaway, Nathaniel A. email , , , , , publications

The Hathaway lab is focused on understanding the biological events responsible for dynamically regulating the selective expression of the mammalian genome. In multicellular organisms, genes must be regulated with high precision during stem cell differentiation to achieve normal development. Pathologically, the loss of proper gene regulation caused by defects in chromatin regulatory enzymes has been found to be a driving force in cancer initiation and progression. My lab uses a combination of chemical biology and cell biology approaches to unravel the molecular mechanisms that govern gene expression. We utilize new tools wielding an unprecedented level of temporal control to visualize changes in chromatin structure and function in mammalian cells and animal models. In addition, we seek to identify small molecule inhibitors that are selective for chromatin regulatory enzymes with the potential for future human therapeutics.

Hicks, Leslie M. email , , , , publications

Research in the Hicks lab focuses on development and implementation of mass spectrometric approaches for protein characterization including post-translational modifications, as well as the identification of bioactive peptides/proteins from plants. Keywords: proteins / peptides, proteomics, PTM, enzymes, analytical chemistry, mass spectrometry, separations / chromatography, plants, algae

James, Lindsey Ingerman email , , publications

We are interested in modulating the activity of chromatin reader proteins with small-molecule ligands, specifically potent and selective chemical probes, in order to open new avenues of research in the field of epigenetics. Our work has pioneered the biochemical assays and medicinal chemistry strategies for high quality probe development for methyl-lysine (Kme) reader proteins, as well as the means by which to evaluate probe selectivity, mechanism of action, and cellular activity. Using a variety of approaches, we utilize such chemical tools to improve our understanding of their molecular targets and the broader biological consequences of modulating these targets in cells. We are also interested in developing novel methods and screening platforms to discover hit compounds to accelerate Kme reader probe discovery, such as affinity-based combinatorial strategies, as well as innovative techniques utilizing our developed antagonists to more fully understand the dynamic nature of chromatin regulation.

Jarstfer, Michael email , , , , publications

The Jarstfer lab uses an interdisciplinary approach to solve biological problems that are germane to human health.   Currently we are investigating the structure of the enzyme telomerase, we are developing small-molecules that target the telomere for drug discovery and chemical biology purposes, and we are investigating the signals that communicate the telomere state to the cell in order to control cellular immortality. We are also engaged in a drug/chemical tool discovery project to identify small molecules that control complex social behavior in mammals.  Techniques include standard molecular biology and biochemistry of DNA, RNA, and proteins, occasional organic synthesis, and high throughput screening.

Jin, Jian email , publications

Research in the Jian Jin lab focuses on the following two main areas: (1) discovering chemical probes for histone methyltransferases (HMTs), a class of more than 50 epigenetic writers that play a critical role in diverse biological processes including chromatin compaction, gene expression, transcriptional regulation, and cell differentiation; and (2) creating functionally selective ligands of G protein-coupled receptors (GPCRs) for treating various central nervous system (CNS) disorders.

Kuhlman, Brian email , , , , publications

We use a combination of experimental and computational methods to redesign protein-protein interactions.  The potential applications for this technology include enhancing protein therapeutic and creating new tools to study signaling pathways.

Lawrence, David S email , , , , , , publications

Living cells have been referred to as the test tubes of the 21st century. New bioactive reagents developed in our lab are designed to function in cells and living organisms. We have prepared enzyme inhibitors, sensors of biochemical pathways, chemically-altered proteins, and activators of gene expression. In addition, many of these agents possess the unique attribute of remaining under our control even after they enter the biological system. In particular, our compounds are designed to be inert until activated by light, thereby allowing us to control their activity at any point in time.

LeCluyse, Edward L email , , , , publications

Dr. Edward (Ed) LeCluyse is currently a Senior Research Investigator in the Institute for Chemical Safety Sciences at The Hamner Institutes of Health Sciences.  Dr. LeCluyse leads a program initiative to identify and develop novel in vitro hepatic model systems to examine cellular responses to drugs and environmental chemicals that target known toxicity pathways. The focus of his research efforts has been to create more organotypic, physiologically-relevant in vitro models that integrate the architectural, cellular and hemodynamic complexities of the liver in vivo.

Li, Bo email , , , , publications

Our research focuses on the discovery and design of new gene-encoded bioactive small molecules from bacteria.  We are interested in understanding enzymes involved in their biosynthesis, their therapeutic mechanisms of action, and implications in health and diseases, in particular with respect to the human microbiome.  This work is driven by intensive development of new metabolomics and genomics technologies.  We subsequently manipulate and engineer these biosynthetic pathways to make new and improved molecules as potential therapeutics such as antibiotics.

Liu, Jian email , , , publications

The overall goal of our research is to develop an enzyme-based approach to synthesize heparin- and heparan sulfate-like therapeutics.  The lab is currently focusing on improving the anticoagulant efficacy of heparin drug as well as synthesizing heparin-like compounds that inhibit herpes simplex virus infections.  We are also interested in using protein and metabolic engineering approaches for preparing polysaccharides with unique biological functions.

Liu, Rihe email , , , , publications

The research interests of the Liu Lab are in functional proteomics and biopharmaceuticals. Currently we are working on the following projects:  (1). Using systems biology approaches to decipher the signaling pathways mediated by disease-related proteases such as caspases and granzymes and by post-translationally modified histones. We address these problems by performing functional protein selections using mRNA-displayed proteome libraries from human, mouse, Drosophila, and C. elegans. (2). Developing novel protein therapeutics and nucleic acid therapeutics that can be used in tumor diagnosis, treatment, and nanomedicine. We use various amplification-based molecular evolution approaches such as mRNA-display and in vivo SELEX to develop novel single domain antibody mimics on the basis of very stable protein domains or to generate aptamers on the basis of nuclease-resistant nucleic acids, that bind to important biomarkers on the surface of cancer cells. We further conjugate these biomarker-binding affinity reagents to small molecule drugs or nanoparticles for targeted delivery of therapeutic agents. (3). Identifying the protein targets of drugs or drug candidates whose action mechanisms are unknown. We combine molecular proteomic and chemical biology approaches to identify the protein targets of drugs whose target-binding affinities are modest.

Loeser, Richard F. email , , , , publications

The Loeser lab uses a combination of in vitro studies in articular chondrocytes and in vivo studies in mice to examine molecular mechanisms of joint tissue destruction in aging and osteoarthritis. A major focus of this work is examining how reactive oxygen species regulate cell signaling through oxidation of Cys residues in specific kinases and phosphatases. Pathways of interest include integrin mediated signaling that stimulates matrix metalloproteinase (MMP) expression and IGF-I signaling that stimulates matrix production. Oxidative stress disrupts the balance in the activity of these pathways to favor matrix destruction over repair contributing to the development of osteoarthritis.

McGinty, Robert email , , , , , publications

The McGinty lab uses structural biology, protein chemistry, biochemistry, and proteomics to study epigenetic signaling through chromatin in health and disease.  Chromatin displays an extraordinary diversity of chemical modifications that choreograph gene expression, DNA replication, and DNA repair – misregeulation of which leads to human diseases, especially cancer. We prepare designer chromatin containing specific combinations of histone post-translational modifications. When paired with X-ray crystallography and cryo-electron microscopy, this allows us to interrogate mechanisms underlying epigenetic signaling at atomic resolution.

Pearce, Ken email , , , , , publications

We are a comprehensive, collaborative group with a primary focus on lead and early drug discovery for oncology and epigenetic targets and pathways.  Our research applies reagent production, primary assay development, high-throughput screening, biophysics, and exploratory cell biology to enable small molecule drug discovery programs in solid partnership with collaborators, both within the Center for Integrative Chemical Biology and Drug Discovery and across the UNC campus.  We apply small molecule hit discovery to highly validated biochemical targets as well as phenotypic cell-based assays.  Our methods include various fluorescence-based readouts and high content microscopy.  Examples of some of our collaborative small molecule discovery programs include, inhibition of chromatin methyl-lysine reader proteins, hit discovery for small GTPases such as K-Ras and Gaq, inhibitors of inositol phosphate kinases, inhibitors of protein-protein interactions involving CIB1 and MAGE proteins, and several cell-based efforts including a screen for compounds that enhance c-Myc degradation in pancreatic cancer cells.  In addition, we are developing a DNA-encoded library approach for hit discovery to complement traditional high-throughput screening.  Our ultimate goal is discovery of new chemical probes and medicines for exploratory biology and unmet medical needs, respectively.

Redinbo, Matt email , , , , , , , publications

The Redinbo Laboratory examines dynamic cellular processes using structural, chemical, molecular and cell biology. Our goals are to discover new drugs and to elucidate molecular pathways essential to human disease.  Current projects include developing the first drugs that target the human microbiome, unraveling the nature of innate immunity in the human lung, and discovering how microbial systems exchange genes, including those that encode antibiotic resistance.

Roth, Bryan email , , , publications

The ultimate goal of our studies is to discover novel ways to treat human disease using G-protein coupled receptors.

Shank, Elizabeth email , , , , , , publications

My laboratory studies chemically mediated interactions between microbes, particularly those that lead to alterations in bacterial development. In the natural world, interspecies chemical communication contributes to the stability and function of complex microbial communities. We explore the mechanisms and molecules that microbes use to influence their microbial neighbors both in the laboratory and in natural environments using genetics, microscopy, chemical imaging, and next generation sequencing. Our goal is to gain insights into microbial ecology, identify compounds with novel bioactivities, and obtain chemical tools to manipulate bacterial behavior to our benefit.

Waters, Marcey email , , publications

Our research focuses on several different aspects of biomolecular recognition, including (1) protein post-translational modifications, (2) protein-nucleic acid interactions, and (3) protein-protein interactions that are important in a number of different biological areas, including epigenetics and cancer.  We use bio-organic chemistry combined with peptide design and biophysical chemistry to study these interactions and to develop new tools for inhibition and/or sensing of these biomolecular interactions.

Weeks, Kevin email , , , , , , publications

The Weeks group invents novel chemical microscopes for understanding the structure and function of RNA and then applies these technologies to leading, and previously intractable, problems in biology. Most projects in the laboratory span fundamental chemistry or technology development and ultimately lead to practical applications in virology (especially HIV), next-generation structure analysis, drug design, and understanding RNA structure in living cells.  Collectively, this work has led to extensive recognition of graduate student colleagues in the laboratory.

Zhang, Qisheng email , , , , publications

Our lab studies lipid signaling pathways that are involved in development and diseases by developing novel chemical probes and technologies. As key components of cellular membranes, lipids also serve as signaling molecules and modify functions of proteins through either covalent or non-covalent interactions. Dys-regulation of lipid signaling has been correlated with various diseases including cancer, diabetes, and neurodegenerative diseases. Consequently, many lipid-related proteins or processes have been used as therapeutic targets. However, lipids are dynamically metabolized and transported, making it difficult to illustrate the roles of lipids in development and diseases with limited availability of probes and technologies for lipid studies. The active projects in the lab include: 1) develop novel technologies to synthesize complex lipids, particularly phosphatidylinositides, and identify their interacting proteins in live cells; 2) develop new small molecule sensors and inhibitors for lipid metabolic enzymes such as PI3K and PLC; and 3) investigate cellular functions of lipids on different processes, particularly those regulated by small GTPases.