Faculty Database:
[ Phd Program: Neurobiology ]

Filter faculty by:
See All
NameEmailPhd ProgramResearch InterestsPublications
Anton, Eva email , , , , , publications

Laminar organization of neurons in cerebral cortex is critical for normal brain function. Two distinct cellular events guarantee the emergence of laminar organization– coordinated sequence of neuronal migration, and generation of radial glial cells that supports neurogenesis and neuronal migration. Our goal is to understand the cellular and molecular mechanisms underlying neuronal migration and layer formation in the mammalian cerebral cortex. Towards this goal, we are studying the following three related questions: 1. What are the signals that regulate the establishment, development and differentiation of radial glial cells, a key substrate for neuronal migration and a source of new neurons in cerebral cortex?2. What are the signals for neuronal migration that determine how neurons reach their appropriate positions in the developing cerebral cortex?3. What are the specific cell-cell adhesion related mechanisms that determine how neurons migrate and coalesce into distinct layers in the developing cerebral cortex?

Belger, Aysenil email , , , publications

Dr. Belger’s research focuses on studies of the cortical circuits underlying attention and executive function in the human brain, as well as the breakdown in these functions in neuropsychiatric and neurodevelopment disorders such as schizophrenia and autism.  Her research also examines changes in cortical circuits and their physiological properties in individuals at high risk for psychotic disorders.  Dr. Belger combines functional magnetic resonance imaging, electrophysiological scalp recording, experimental psychology and neuropsychological assessment techniques to explore the behavioral and neurophysiological dimensions of higher order executive functions.  Her most recent research projects have begun focusing on electrophysiological abnormalities in young autistic children and individuals at high risk for schizophrenia.

Besheer, Joyce email , , publications

Research in my lab examines the neurobiological mechanisms underlying alcoholism and addiction. At present studies are focused on the interaction between stress-related systems and sensitivity to alcohol, in order to better understand the mechanisms that underlie increased alcohol drinking during stressful episodes. We use an array of behavioral (e.g., operant self-administration, drug discrimination) and behavioral pharmacology techniques, including targeted brain regional drug injections, to functionally evaluate the role of specific molecular targets. In parallel to the behavioral studies, we use immunohistochemistry and Western blot techniques to examine alterations in the expression of various molecular targets following stress exposure. We are also applying these techniques to examine and integrate the study of depression that emerges following stress hormone exposure.

Boettiger, Charlotte email , , , , publications

My lab uses a cognitive neuroscience approach to understand the neurobiology of drug addiction in humans. The tools we use include fMRI, cognitive testing, physiological monitoring, pharmacology, and genetic testing. We specifically seek to determine 1) how the brain learns new stimulus-response associations and replaces learned associations, 2) the neurobiological mechanisms underlying the tendency to select immediate over delayed rewards, and 3) the neural bases of addiction-related attentional bias.

Breese, George email , , , , , publications

This multidisciplinary laboratory has 6 interests: 1) Defining regionally specific adaptations responsible for functions altered by chronic ethanol;  2) Characterizing regional CNS biochemical changes induced by stress and CRF after chronic ethanol;  3) Defining the role of central cytokines in behaviors induced by stress; 4) Exploring how a benzodiazepine (BZD) agonist shares actions with a BZD antagonist;  5) Defining TRH receptor subtype(s) responsible for its anti-anxiety and analeptic actions;  and  6) Defining the action of galanin on ethanol withdrawal-induced anxiety.  To undertake our interests, behavioral, anatomical, pharmacological, electrophysiological, biochemical, and molecular biological approaches are used.

Brenman, Jay email , , , , , , publications

The Brenman lab studies how a universal energy and stress sensor, AMP-activated protein kinase (AMPK) regulates cellular function and signaling.  AMPK is proposed to be a therapeutic target for Type 2 diabetes and Metabolic syndrome (obesity, insulin resistance, cardiovascular disease). In addition, AMPK can be activated by LKB1, a known human tumor suppressor. Thus AMPK signaling is not only relevant to diabetes but also cancer.  We are interested in molecular genetic and biochemical approaches to understand how AMPK contributes to neurodegeneration, metabolism/cardiac disease and cancer.

Burmeister, Sabrina S. email , , , , publications

Sensory neurobiology of animal communication, sensory-endocrine interactions and evolution of the brain.

Carelli, Regina M. email , , , , publications

Research in the Carelli laboratory is in the area of behavioral neuroscience.  Our studies focus on the neurobiological basis of motivated behaviors, including drug addiction. Electrophysiology and electrochemistry procedures are used during behavior to examine the role of the brain ‘reward’ circuit in natural (e.g., food) versus drug (e.g., cocaine) reward.   Studies incorporate classical and operant conditioning procedures to study the role of the nucleus accumbens (and dopamine) and associated brain regions in learning and memory, as they relate to motivated behaviors.

Carney, Paul R. email , , , publications

A central theme of my work is that I combine engineering and neuroscience with medical research to develop more effective therapies for neurological disease. This leverages my experience as both a clinician scientist and engineer. The passion that drives my career is the search for better ways to prevent and treat epilepsy which affects over 60 million people worldwide.

I lead a long-term effort to define structural and functional biomarkers of epileptic networks and seizure generation to enable more precise diagnostics and effective antiepileptic therapies. Because effective treatment and cure in epilepsy typically require an understanding of neural systems and fundamental processes, my research strives to combine studies of basic questions with applied research. Our goal is to advance the translation of biomedical discoveries into applications that improve clinical outcomes. Although my research spans the continuum from basic to applied questions, it focuses mostly on systems neuroscience and provides a strong scientific basis for implementing antiepileptic strategies. I engage and innovate in the areas of signal processing, computational neuroscience, brain imaging, cell signaling, and gene therapy. Clinical translation is an important goal of my work, in addition to mentoring clinicians and scientists across fields. Involvement of graduate students and postdoctoral fellows is a critical aspect of my research program. Through the research process, I strive to train students in basic concepts, research methodology, management strategies, and philosophies of science. I also take enjoyment from expanding my research program horizons in new areas of the world and with new research questions and technologies.

Cheney, Richard email , , , , , , publications

Our goal is to understand the fundamental cell biology underlying processes such as neurodevelopment, angiogenesis, and the metastasis of cancer cells.  Most of our experiments focus on molecular motors such as myosin-X and on the finger-like structures known as filopodia.  We generally utilize advanced imaging techniques such as TIRF and single-molecule imaging in conjunction with mammalian cell culture.  We also  use molecular biology and biochemistry and are in the process of developing a mouse model to investigate the functions of myosin-X and filopodia.   We are looking for experimentally driven students who have strong interests in understanding the molecular basis of dynamic cellular processes such as filopodial extension, mechanosensing, and cell migration.

Cohen, Jessica email , , , , publications

The Cohen Lab investigates how functional brain networks in humans interact and reconfigure when confronted with changing cognitive demands, when experiencing transformations across development, and when facing disruptions in healthy functioning due to disease. We are also interested in how this neural flexibility contributes to flexibility in control and the ability to learn, as well as the consequences of dysfunction in this flexibility. We use behavioral, neuroimaging, and clinical approaches taken from neuroscience, psychology, and mathematics to address our research questions.

Cohen, Todd email , , , , publications

My research aims to uncover the molecular aspects of protein aggregation diseases (also called PAD) which include neurodegenerative diseases (such as Alzheimer’s disease and Amyotrophic Lateral Sclerosis), myofibrillar myopathies (such as muscular dystrophies), as well as the formation of age-related cataracts.  Although very distinct, these disorders share a common underlying pathogenic mechanism.  Using a combination of biochemistry and in vitro approaches, cell biology, and primary cells / transgenic mouse models, we will investigate the post-translational modifications (PTMs) that drive these disease processes. Ultimately, this research will provide a platform for future drug discovery efforts against these devastating diseases.

Crews, Fulton email , , , , , publications

Research in the laboratory focuses on mechanisms of neurodegeneration and regeneration, particularly stem cells in brain.

Crews, Stephen email , , , , , , publications

Research in the lab is focused on a genetic, cellular, and molecular understanding of Drosophila developmental neuroscience, including the following research areas – (1) Neuronal formation and differentiation, (2) Glial formation, migration, and axon-glial interactions, (3) Synaptic connectivity, and (4) Transcriptional regulation.

Dayan, Eran email , , , publications

Our lab studies brain network connectivity in the healthy brain and in neurological and neuropsychiatric patient populations. We focus on the organizational, dynamical, and computational properties of large-scale brain networks and determine how these properties contribute to human behavior in health and disease. We strive to advance the basic understanding of brain structure and function, while making discoveries that can be translated to clinical practice.

Deshmukh, Mohanish email , , , , , , publications

We study how mammalian cells regulate their survival and death (apoptosis).  We have focused our work on identifying unique mechanisms by which these pathways are regulated in neurons, stem cells, and cancer cells.  We utilize various techniques to examine this in primary cells as well as in transgenic and knock out mouse models in vivo.  Our ultimate goal is to discover novel cell survival and death mediators that can be targeted for therapy in neurodegeneration and cancer.

Dichter, Gabriel S email , publications

Dr. Dichter’s research examines pathophysiology and response to treatment in autism and mood disorders using function MRI, eyetracking, and electrophysiology.  Lab facilities reside at the Carolina Institute for Developmental Disabilities.  Potential students should have a strong interest in clinical neuroscience and psychiatric research methods.  For more information about the lab, please see our lab website at http://www.can.unc.edu

Diering, Graham email , , , , publications

Sleep is an essential and evolutionarily conserved process that modifies synapses in the brain to support cognitive functions such as learning and memory. We are interested in understanding the molecular mechanisms of synaptic plasticity with a particular interest in sleep. Using mouse models of human disease as well as primary cultured neurons, we are applying this work to understanding and treating neurodevelopmental disorders including autism and intellectual disability. The lab focuses on biochemistry, pharmacology, animal behavior and genetics.

Dudek, Serena M email publications

Humans have a remarkable ability to learn from their environment after birth, but this plasticity also makes them susceptible to environmental insults.  At the cellular level, learning is accomplished by changing the strength of the synaptic connections between neurons.  Therefore, the Dudek lab is working to identify the underlying processes of synaptic plasticity.  Using molecular techniques, patch clamp recordings and confocal microscopic imaging from neurons in brain slices and culture, we ask how neuronal activity controls gene transcription and brain circuitry and what determines why some brain regions are more plastic than others.  These studies are likely to shed light on environmental causes of psychiatric diseases such as schizophrenia and autism.

Frohlich, Flavio email , , , , , , publications

Our goal is to revolutionize the treatment of psychiatric and neurological illness by developing novel brain stimulation paradigms. We identify and target network dynamics of physiological and pathological brain function. We combine computational modeling, optogenetics, in vitro and in vivo electrophysiology in animal models and humans, control engineering, and clinical trials. We strive to make our laboratory a productive, collaborative, and happy workplace.

Gershon, Timothy R email , , , , publications

As a pediatric neurologist and brain tumor researcher, I seek to understand the link between brain growth and childhood brain tumors.  During postnatal cerebellar development, neural progenitors divide rapidly.  This wave of neurogenesis must be strictly controlled to prevent formation of medulloblastoma, a malignant neuroblastic tumor of the cerebellum.  Using transgenic mice that express constitutively active Smoothened, we are able to recapitulate tumorigenesis in mice.  These tumor-prone mice develop medulloblastomas that model the human tumor in pathology and gene expression.  We use this primary brain tumor model to gain novel insight into medulloblastoma pathogenesis and treatment.

Gilmore, John email , , , , publications

Dr. Gilmore’s research group is applying state-of–the-art magnetic resonance imaging and image analysis techniques to study human brain development in 0-6 year olds.  Approaches include structural, diffusion tensor, and resting state functional imaging, with a focus on cortical gray and white matter development and its relationship to cognitive development.  Studies include normally developing children, twins, and children at high risk for schizophrenia and bipolar illness.  We also study the contributions of genetic and environmental risk factors to early brain development in humans.  A developing collaborative project with Flavio Frohlich, PhD will use imaging to study white and gray matter development in ferrets and its relationship with cortical oscillatory network development.

Giovanello, Kelly S email , publications

My research combines behavioral, patient-based, and functional neuroimaging approaches to investigate the cognitive neuroscience of human learning and memory. My primary research focus is in elucidating the cognitive processes and neural mechanisms mediating relational memory – the form of memory which represents relationships among items or informational elements. In everyday life, relational memory processes play a critical role in linking or binding together the various cognitive, affective, and contextual components of a learning event into an integrated memory trace. I am interested in exploring the cognitive and neural processes mediating relational memory in young adults and examining how these processes change with healthy aging and neurodegenerative disease (particularly Alzheimer’s disease).

Girdler, Susan email , , , publications

I have been an NIH-funded women’s health researcher for over 20 years.   The focus of my current research is in reproductive mood disorders, such as premenstrual dysphoric disorder and postpartum depression.  Current research in my lab is investigating the role of psychosocial stress (e.g., histories of trauma) and alterations in cardiovascular, neuroendocrine, and GABAergic neurosteroid reactivity to stress in reproductive mood disorders.   I also have a long-standing research record in studies investigating ethnic and racial differences in physiologic stress reactivity and endogenous pain regulation.    /  / I co-direct an NIH-funded postdoctoral training program as well as the UNC Department of Psychiatry Junior Faculty Mentoring Program.  I am dedicated to training the next generation of independent investigators.

Gray, Steven email , , , , publications

My core expertise is in adeno-associated virus (AAV) gene therapy vector engineering, followed by optimizing approaches to deliver a gene to the central and peripheral nervous system.  As reagents have been developed to achieve global and efficient nervous system gene transfer, my research focus has also included preclinical studies to apply these reagents toward the treatment of neurological and ocular diseases.  Currently these include Rett Syndrome, Giant Axonal Neuropathy, Tay-Sachs, Krabbe, Batten Disease (INCL and LINCL), and AGU.  My ongoing research focuses on 1) continued development and optimization of AAV vectors specifically tailored toward neurologic and ophthalmologic disorders 2) testing novel gene therapy approaches for applicable disorders, and 3) facilitating the translation of these approaches from bench to clinic.

I am a member of the UNC Gene Therapy Center, Carolina Institute for Developmental Disabilities, and Department of Ophthalmology.  My lab has several strong partnerships with patient and rare disease advocacy groups. A major accomplishment from my lab is that we independently developed a gene therapy approach to treat Giant Axonal Neuropathy, which is in clinical testing at the NIH Clinical Center (https://clinicaltrials.gov/ct2/show/NCT02362438).

Gupton, Stephanie email , , , , , , , publications

During cell shape change and motility, a dynamic cytoskeleton produces the force to initiate plasma membrane protrusion, while vesicle trafficking supplies phospholipids and membrane proteins to the expanding plasma membrane. Extracellular cues activate intracellular signaling pathways to elicit specific cell shape changes and motility responses through coordinated cytoskeletal dynamics and vesicle trafficking. In my lab we are investigating the role of two ubiquitin ligases, TRIM9 and TRIM67, in the cell shape changes that occur during neuronal development. We utilize a variety techniques including high resolution live cell microscopy, gene disruption, mouse models, and biochemistry to understand the complex coordination of cytoskeletal dynamics and membrane trafficking driving neuronal shape change and growth cone motility in primary neurons.

Hahn, Klaus email , , , , , , , , , publications

Dynamic control of signaling networks in living cells; Rho family and MAPK networks in motility and network plasticity; new tools to study protein activity in living cells (i.e., biosensors, protein photomanipulation, microscopy). Member of the Molecular & Cellular Biophysics Training Program and the Medicinal Chemistry Program.

Harden, Kendall email , , , , , publications

We focus on mechanistic/structural aspects of regulatory proteins (heterotrimeric and Ras family GTPases, RGS proteins, and PLC isozymes) involved in inositol lipid signaling, and on G protein-coupled receptors for extracellular nucleotides.

Herman, Melissa email , , , , publications

My research interests involve the structure of inhibitory neuronal networks and how these networks change to produce adverse behavioral outcomes. My main interest is how the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) regulates neuronal networks via both synaptic and extrasynaptic forms of inhibition and how alterations in inhibitory networks contribute to clinical conditions such as alcohol use disorder, nicotine, addiction, or stress. My work has focused primarily on three brain regions: the nucleus tractus solitaries (NTS), central and basolateral amygdala, and ventral tegmental area. In each of these areas I have identified local inhibitory networks that control overall excitability and that are dysregulated by exposure to acute and or chronic exposure to alcohol or nicotine.

Hige, Toshi email , , , , , publications

[MOVING TO UNC-CH IN JANUARY 2018] Flexibility of the brain allows the same sensory cue to have very different meaning to the animal depending on past experience (i.e. learning and memory) or current context. Our goal is to understand this process at the levels of synaptic plasticity, neural circuit and behavior. Our model system is a simple brain of the fruit fly, Drosophila. We employ in vivo electrophysiology and two-photon calcium imaging together with genetic circuit manipulation. Taking advantage of this unique combination, we aim to find important circuit principles that are shared with vertebrate systems.

 

Hodge, Clyde email , , , , , , , publications

Our preclinical research is based on the concept that drugs of abuse gain control over behavior by hijacking molecular mechanisms of neuroplasticity within brain reward circuits. To understand this process, we take a multidisciplinary preclinical approach that combines state-of-the-art behavioral methods with a variety of molecular, genetic, and pharmacological approaches. Members of our lab are dedicated to helping win the war on addiction by identifying targets of alcohol within brain reward circuits and validating compounds for potential pharmacotherapeutic impact. Our preclinical research employs several cutting-edge approaches to identify neural targets of voluntary alcohol self-administration in mice, including 2D-DIGE proteomics, Western blots, and immunohistochemistry. We evaluate neural circuits using track tracing, optogenetics, and site-specific microinjection strategies, and have plans to conduct fMRI in mice. To evaluate mechanistic regulation of behavioral pathologies in addiction, we employ knockout mice, viral vectors, and pharmacological approaches to manipulate molecular targets within specific brain region(s). We also evaluate co-morbid neuropsychiatric conditions including anxiety and depression as part of a comprehensive behavioral neuroscience strategy. The lab culture is collaborative and dynamic, innovative, and team-based. We are looking for colleagues who share an interest in understanding how alcohol hijacks reward pathways to produce addiction.

Hopfinger, Joseph email , publications

Research in my laboratory investigates human cognition. We use behavioral measures and scalp-recorded event-related brain potentials (ERPs) to gain a better understanding of the rapid neural dynamics underlying cognitive processes, such as the interactions between attentional capture, sustained attention, and distraction.  We also use fMRI to investigate the neural architecture supporting voluntary attention, as well as social cognitive processes.  A new direction of our research is using these methods to investigate changes in neural connectivity that may be associated with cognitive “brain training.” Finally, in collaborative projects, we also investigate social cognitive processing in psychiatric populations, language comprehension in healthy individuals, and dysfunctional attentional control in adults at risk for alcoholism.

Huang, David email , , publications

Dr. David Huang is the director of the UNC Health Care Comprehensive Stroke Center and  the director of the UNC Stroke Trials Unit (STU).  He has research interests in developing new treatments for ischemic and hemorrhagic strokes .  The STU conducts a number of clinical trials testing novel treatments as well as studies investigating the pathophysiology of cellular injury resulting from stroke.

Kash, Thomas email , , , , , , publications

Emotional behavior is regulated by a host of chemicals, including neurotransmitters and neuromodulators, acting on specific circuits within the brain. There is strong evidence for the existence of both endogenous stress and anti-stress systems. Chronic exposure to drugs of abuse and stress are hypothesized to modulate the relative balance of activity of these systems within key circuitry in the brain leading to dysregulated emotional behavior. One of the primary focuses of the Kash lab is to understand how chronic drugs of abuse and stress alter neuronal function, focusing on these stress and anti-stress systems in brain circuitry important for anxiety-like behavior. In particular, we are interested in defining alterations in synaptic function, modulation and plasticity using a combination of whole-cell patch-clamp physiology, biochemistry and mouse models.  Current projects are focused on the role of a unique population of dopamine neurons in alcoholism and anxiety.

Kato, Hiroyuki email , , publications

Our primary goal is to identify how our brain processes sound inputs to detect complex patterns, such as our language. Using mouse auditory cortex as a model system, we combine multiple cutting-edge techniques (e.g. in vivo whole-cell recording, two-photon calcium imaging, and optogenetics) in behaving animals to dissect the circuits that connect vocal inputs to behavioral outputs. Findings in the simple mouse cortex should provide a first step towards the ultimate understanding of the complex human brain circuits that enable verbal communication, and how they fail in psychiatric disorders.

Knickmeyer Santelli, Rebecca email , , , , publications

Dr. Knickmeyer Santelli’s lab seeks to advance our understanding of neurodevelopmental disorders through the integration of pediatric neuroimaging with genetic, endocrine, and behavioral methodologies. In particular, her research explores the role which common and rare genetic variation plays in explaining individual differences in neurodevelopment during infancy and early childhood and investigates the mechanisms which modulate differential vulnerability to and expression of neurodevelopment disorders in each sex. She is also using MRI to evaluate the effects of prenatal exposure to antidepressants and to understand how microbial colonization of the gut impacts human brain development and anxiety.

Lorenzo, Damaris N. email , , , , , publications

Cytoskeletal-associated proteins are critical for the maintenance of cellular homeostasis, and their involvement in cancer and in numerous neurodegenerative, neurodevelopmental, psychiatric, heart, muscular, and metabolic disorders underscores their functional relevance.

Our lab investigates the contribution of the cytoskeleton to key physiological processes and the mechanistic basis of cytoskeleton-associated disorders. Our goal is to understand the roles of cytoskeletal proteins in the regulation of cellular dynamics and bioenergetics in metabolically active tissues as well as their involvement in brain development and connectivity. Our initial efforts focus on the ankyrin and spectrin families of cytoskeletal-associated proteins, which deficits have direct implications in the regulation of cell migration, in metabolic disorders such as obesity and diabetes, and may also underlie neurological diseases, including spinocerebellar ataxias, autism and West syndrome.

We combine human genetics, cellular and biochemistry approaches with Omics technologies and high resolution imaging-based assays in primary cells and in animal models of development and human disease.

Lysle, Donald email , publications

Psychoneuroimmunology; the effects of conditioning on lymphocyte reactivity

Maixner, William email , , , publications

Dr. Maixner’s research program focuses on identifying the pathophysiological processes that underlie pain perception, persistent pain conditions, and related disorders. His current research focuses on genetic, environmental, biological, and psychological risk factors that contribute to the onset and maintenance of chronic pain conditions. A long term goal of his program is to translate new discoveries into clinical practices that improve the ability to diagnose and treat patients experiencing chronic pain.

Maness, Patricia F. email , , , publications

My research focuses on molecular mechanisms of mammalian nervous system development. We investigate mechanisms by which developing neurons migrate to the neocortex and form connections.

Manis, Paul B. email , , , , publications

We are interested in the cellular and network mechanisms of sensory information processing in the central nervous system, with an emphasis on the neural substrates for hearing. We study functional network organization, synaptic function, the roles of ion channels and cellular excitability, and short and long-term synaptic plasticity, in the auditory brainstem and auditory cortex.  Experimentally, we use patch clamp methods in brain slices, optogenetics and laser scanning photostimulation, multiphoton imaging, and computational neuroscience (modeling), in normal and transgenic mouse models. The lab also has collaborative projects related to schizophrenia (prefrontal cortex; Dr. Patricia Maness, UNC) and connectomics (cochlear nucleus and MNTB; Dr. George Spirou, WVU).

Markovic-Plese, Silva email , , , , , publications

My long-term goal is to understand and therapeutically target the key mechanisms of disease development in patients with multiple sclerosis (MS).  Our research has been focused on the molecular events involved in the initiation of the autoimmune response in MS, and on the mechanisms of action of immunomodulatory therapies for this disabling disease.  Current projects in the laboratory include transcriptional and proteomic profiling of the peripheral blood cells and cerebrospinal fluid obtained from patients in the early phase of the disease, which lead to the discovery of the high levels of IL-11 in the CSF and its high up-regulation in the blood-derived CD4+ T-cells in patients with clinically isolated syndrome (CIS) suggestive of MS. Our center is uniquely positioned to perform the proposed research, having an access to the clinical samples through the integrated clinical and cellular/molecular biology research.

Matera, Greg email , , , , , , , publications

Research in our laboratory is focused on RNA. We aim to understand how ribonucleoprotein particles (snRNPs, mRNPs, etc.) are transcribed, packaged and transported to their final destinations in the cell.  We are also interested in the genetic and epigenetic forces that direct formation of microscopically visible subcellular structures (e.g. nuclear bodies). We use a combination of approaches, including Drosophila genetics, molecular cell biology, biochemistry, digital imaging microscopy and genome-wide analyses. Projects in the lab are focused on two areas:  models of a neurogenetic disease called Spinal Muscular Atrophy (SMA) and the functional analysis of post-translational modifications of chromatin and RNA-binding proteins important in cancer and other diseases.

Matsushima, Glenn K email , , , , , , publications

Our laboratory is interested in innate immune responses during injury to the central nervous system and during inflammation during microbial infections.  Our laboratory has a special interest in autoimmune diseases such as multiple sclerosis and systemic lupus erythematosus.  We also are pursuing drug discovery projects targeting receptors that may modulate demyelinating disease and immune responses.  We use molecular, cellular and biochemical approaches both in vitro and in vivo to identify the function of key mediators during pathogenesis.

McCarthy, Ken email , , , , , publications

Investigating the role of astrocyte signaling in brain function.

McElligott, Zoe email , , , publications

Research in the McElligott lab focuses on the circuits and plasticity that underlie the development and manifestation of psychiatric illness, specifically disorders on the affective spectrum including alcohol use disorders, drug abuse and anxiety disorders. The lab has expertise in studying neurotransmission from the level of signaling in individual cells through behavior utilizing a variety of techniques including: whole-cell electrophysiology, in vivo and ex vivo fast-scan cyclic voltammetry (FSCV), circuit manipulations (optogenetics, chemogenetics, caspase ablation), and behavioral assays.  There are several ongoing projects in the lab. One area we are focused on explores the role of neurons in the central nucleus of the amygdala (CeA) that express the neuropeptide neurotensin and the role these neurons play in alcohol related phenotypes. Additionally we are interested in exploring how norepinephrine modulates neurotransmission within the brain and how the norepinephrine system itself is modulated in models of substance abuse and post-traumatic stress. Beyond these studies, we are actively engaged in several other collaborative projects with other labs at UNC, as well as around the world.

Meeker, Rick email , , , , publications

Dr. Meeker’s research is focused on the mechanisms of HIV neuropathogenesis and the development of therapeutic strategies for the treatment of neuroinflammation. Inflammatory changes within the brain caused by the viral infection initiate a toxic cascade that disrupts normal neural function and can eventually lead to neuronal death. To explore the mechanisms responsible for this damage, we investigate changes in calcium homeostasis, glutamate receptor function and inflammatory responses in primary neuronal, microglial and macrophage cultures. New therapeutic approaches targeted to signal transduction pathways and calcium regulation that protect the neurons and reduce inflammation are under investigation.

Miller, C. Ryan email , , , , , , , , , , publications

My laboratory studies diffuse gliomas, devastating primary tumors of the central nervous system for which few effective drugs are currently available.  We utilize genetically engineered mice, cell culture, and human tumor model systems to explore the molecular pathogenesis of gliomas.  We utilize animal model systems to develop drugs and diagnostic markers for their individualized therapy.  Rotating students gain experience with multiple techniques, including cell culture, molecular biology, genomics, genetic lineage tracing, fluorescence microscopy, and digital image analysis.

Morrow, Leslie email , , , , , , publications

Function, expression and trafficking GABA-A receptors in the CNS; effects of chronic ethanol exposure that leads to ethanol tolerance and dependence; role of endogenous neurosteroids on ethanol action and ethanol-induced adaptations. Role of neuroactive steroids in neuropsychiatric disease, including addiction, depressive disorders, anxiety disorders, inflammatory disorders.

Nicholas, Robert A. email , , , , , , publications

My laboratory has two main interests: 1) Regulation of P2Y receptor signaling and trafficking in epithelial cells and platelets. Our laboratory investigates the cellular and molecular mechanisms by which P2Y receptors are differentially targeted to distinct membrane surfaces of polarized epithelial cells and the regulation of P2Y receptor signaling during ADP-promoted platelet aggregation. 2) Antibiotic resistance mechanisms. We investigate the mechanisms of antibiotic resistance in the pathogenic bacterium, Neisseria gonorrhoeae. Our laboratory investigates how acquisition of mutant alleles of existing genes confers resistance to penicillin and cephalosporins. We also study the biosynthesis of the gonococcal Type IV pilus and its contribution to antibiotic resistance.

Peifer, Mark email , , , , , , , publications

Cell adhesion, signal transduction, and cytoskeletal regulation during embryogenesis and in cancer.  We focus on the regulation of cadherin-based cell-cell adhesion, and on Wnt signaling and its regulation by the tumor suppressor APC.

Philpot, Ben email , , , , publications

My lab is driven to understand the neuronal pathologies underlying neurodevelopmental disorders, and to use this information to identify novel therapeutics.  We focus our research on monogenic autism spectrum disorders, including Angelman, Rett, and Pitt-Hopkins syndromes.  We employ a diverse number of techniques including: electrophysiology, molecular biology, biochemistry, mouse engineering, and in vivo imaging.

Piven, Joseph email publications

Dr. Piven’s research focus is on the pathogenesis of autism including neural mechanisms, genetic basis and neuropsychological and behavioral phenotype.

Reissner, Kathryn email , , , , publications

Research in our lab is focused on understanding how cocaine abuse affects glial cell physiology, in particular neuron-astrocyte communication.  We utilize the rat cocaine self-administration/reinstatement model, which allows us to test hypotheses regarding not only how chronic cocaine use affects properties of astrocytes and the tripartite synapse, but also how compounds affecting glial cells may influence synaptic processing within the brain’s reward neurocircuitry and behavioral measures of drug seeking.

Robinson, Donita email , , , , publications

The Robinson lab currently explores the neurodynamics of reinforcement pathways in the brain by using state-of-the-art, in vivo recording techniques in freely moving rats. Our goal is to understand the interplay of mesostriatal, mesocortical and corticostriatal circuits that underlie action selection, both in the context of normal development and function, and in the context of psychiatric disorders that involve maladaptive behavior, such as alcohol use disorder, adolescent vulnerability to drug use and addiction, cocaine-induced maternal neglect and binge-eating disorders.

Roth, Bryan email , , , publications

The ultimate goal of our studies is to discover novel ways to treat human disease using G-protein coupled receptors.

Samulski, Jude email , , , , , publications

We are engaged in studying the molecular biology of the human parvovirus adeno-associated virus (AAV) with the intent to using this virus for developing a novel, safe, and efficient delivery system for human gene therapy.

Segal, Rick email publications

Movement control and neuroplasticity in able-bodied humans and humans with neurological dysfunction are the focus of research program. More specifically, would like to understand the basic interaction of spinal circuits and supraspinal systems and adaptability of these interactions during upper limb movements and locomotion. Studies to understand this interaction include anatomical (dissection and MRI), electrophysiological (EMG and reflex) and biomechanical studies to identify the neuromuscular elements that interact with spinal circuits, and what principles govern their coordination. Studies are also underway to understand plasticity of spinal circuits, including those underlying stretch reflexes in both able-bodied humans and humans with spinal cord injury. These studies utilize operant conditioning of reflexes that may be useful for the functional training of newly formed connections in spinal cord injured patients if regeneration can be induced. The operant conditioning studies will also be useful in determining the relationship of spinal circuits and voluntary movement.

Shiau, Celia email , , , , , , , publications

The Shiau Lab is integrating in vivo imaging, genetics, genome editing, functional genomics, bioinformatics, and cell biology to uncover and understand innate immune functions in development and disease. From single genes to individual cells to whole organism, we are using the vertebrate zebrafish model to reveal and connect mechanisms at multiple scales. Of particular interest are 1) the genetic regulation of macrophage activation to prevent inappropriate inflammatory and autoimmune conditions, and 2) how different tissue-resident macrophages impact vertebrate development and homeostasis particularly in the brain and gut, such as the role of microglia in brain development and animal behavior.

Shih, Yen-Yu Ian email , , , , publications

Dr. Shih is the Director of Small Animal Magnetic Resonance Imaging (MRI) at the Biomedical Research Imaging Center. His lab has implemented multi-model MRI techniques at high magnetic field to measure cerebral blood oxygenation, blood flow, blood volume, and oxygen metabolism changes in preclinical animal models. Dr. Shih’s lab is also developing simultaneous functional MRI (fMRI) and electrophysiology recording techniques at high spatial resolution to elucidate the pathophysiological mechanisms of neurovascular diseases. They will apply these techniques to (i) explore/validate functional connectivity network and neurovascular coupling in the rodent brain, (ii) study tissue characteristics after stroke, and (iii) investigate deep brain electrical stimulation, optogenetic stimulation, and pharmacogenetic stimulation in normal and Parkinsonian animal models.

Smith, Spencer L email , publications

My laboratory explores neural circuitry and how it changes moment-to-moment, and over a lifetime, using imaging, electrophysiology, and behavior. The goal of our research is a better understanding of how molecular, cellular, and synaptic mechanisms underlie the function of large-scale brain circuitry. Ultimately, we hope this better understanding may illuminate the mechanisms in complex diseases like autism and schizophrenia, and suggest new therapeutic strategies.

Sockman, Keith W email , , , , , publications

I study the ultimate and proximate factors controlling flexibility in reproductive behavior. Using songbirds as a system, I use field and laboratory studies to investigate the ecological cues regulating reproductive flexibility, the neural integration of these cues, and the neural mechanisms precipitating adaptive behavioral outcomes. Of particular interest is the study of courtship and mate-choice behavior and how the songbird brain integrates ecological and social information. I am also interested in how the timing of reproduction, reproductive effort, and family planning are controlled. I use high performance liquid chromatography for the measurement of central catecholamines and immunocytochemistry and microscopy for quantifying neuropeptides and the expression of immediate early genes as markers of neural activity.

Song, Juan email , , , , publications

Our primary research interest is to identify the mechanisms that regulate neural circuit organization and function at distinct stages of adult neurogenesis, and to understand how circuit-level information-processing properties are remodeled by the integration of new neurons into existing circuits and how disregulation of this process may contribute to various neurological and mental disorders. Our long-range goals are to translate general principles governing neural network function into directions relevant for understanding neurological and psychiatric diseases. We are addressing these questions using a combination of cutting-edge technologies and approaches, including optogenetics, high-resolution microscopy, in vitro and in vivo electrophysiology, genetic lineage tracing and molecular biology.

Stein, Jason email , , , , , publications

We are a lab exploring how variations in the genome change the structure and development of the brain, and in doing so, create risk for neuropsychiatric illness. We study genetic effects on multiple aspects of the human brain, from macroscale phenotypes like gross human brain structure measured with MRI to molecular phenotypes like gene expression and chromatin accessibility measured with genome-sequencing technologies. We also use neural progenitor cells as a modifiable and high fidelity model system to understand how disease-associated variants affect brain development.

Stuber, Garret email , , , publications

My lab focuses on delineating the neural circuits that mediate motivated behavioral states that are disrupted in diseases such as addiction, schizophrenia, depression, eating disorder and autism spectrum disorders.  Using animal models we employ a range to cutting edge tools and techniques to study neural circuit function.  Advances in the newly emerging fields such as optogenetics and in vivo imaging have now given us unprecedented abilities to control and monitor the activity of genetically defined neural circuit elements in the behaving animal.  Our research will ultimately uncover how genetically defined cell types in the brain orchestrate and control complex motivated behavioral states.

Tarantino, Lisa M. email , , , , , , , , publications

The Tarantino lab studies addiction and anxiety-related behaviors in mouse models using forward genetic approaches. We are currently studying a chemically-induced mutation in a splice donor site that results in increased novelty- and cocaine-induced locomotor activity and prolonged stress response. We are using RNA-seq to identify splice variants in the brain that differ between mutant and wildtype animals. We are also using measures of initial sensitivity to cocaine in dozens of inbred mouse strains to understand the genetics, biology and pharmacokinetics of acute cocaine response and how initial sensitivity might be related to addiction. Finally, we have just started a project aimed at studying the effects of perinatal exposure to dietary deficiencies on anxiety, depression and stress behaviors in adult offspring. This study utilizes RNA-seq and a unique breeding design to identify parent of origin effects on behavior and gene expression in response to perinatal diet.

Taylor, Anne Marion email , , publications

Local mRNA translation is critical for axon regeneration, synapse formation, and synaptic plasticity. While much of research has focused on local translation in dendrites and in peripheral axons, less is known about local translation in smaller diameter central axons due to the technical difficulty of accessing them. We developed microfluidic technology to allow access to axons, as well as nascent boutons and fully functional boutons. We identified multiple transcripts that are targeted to cortical and hippocampal axons in rat (Taylor et al. J Neurosci 2009). Importantly, this work countered the prevailing view that local mRNA translation does not occur in mature axons. We are actively investigating transcripts in axons that may play a role in establishing proper synaptic connections. We are also using our technology to identify transcripts targeted to axons and boutons in human neurons. These studies are a critical step towards the identification of key genes and signaling molecules during synapse development, axonal regeneration, and proper circuit function.

Thiele, Todd email , , publications

My primary research interests are directed at the neurobiology of alcoholism. To study the central mechanisms involved with neurobiological responses to ethanol, I use both genetic and pharmacological manipulations. There are many factors that may cause an individual to progress from a moderate or social drinker to an alcoholic. In addition to environmental influences, there is growing evidence in both the human and animal literature that genetic factors contribute to alcohol abuse. Furthermore, the risk for developing alcoholism is likely not associated with a single gene, but rather with multiple genes that interact with environmental factors to determine susceptibility for uncontrolled drinking. Some of the questions that my laboratory is currently addressing are: 1) Does central neuropeptide Y (NPY) signaling modulate neurobiological responses to ethanol and ethanol consumption, 2) Do melanocortin peptides modulate ethanol intake? and 3) Does cAMP-dependent kinase (PKA) play a role in voluntary ethanol consumption and/or other effects produced by ethanol?

Ting, Jenny email , , , , , , , , , , publications

Topics include gene discovery, genomics/proteomics, gene transcription, signal transduction, molecular immunology.  Disease relevant issues include infectious diseases, autoimmune and demyelinating disorders, cancer chemotherapy, gene linkage.

Tropsha, Alexander email , , , , , , , publications

The major area of our research is Biomolecular Informatics, which implies understanding relationships between molecular structures (organic or macromolecular) and their properties (activity or function). We are interested in building validated and predictive quantitative models that relate molecular structure and its biological function using statistical and machine learning approaches. We exploit these models to make verifiable predictions about putative function of untested molecules.

Weinberg, Richard email , , , publications

I’m a neurobiologist who uses immunocytochemistry and electron microscopy to address functional questions. I am trying to elucidate the molecular organization of synaptic signaling in the rodent neocortex, hippocampus, and striatum. I’m also interested in the actin cytoskeleton of dendritic spines, and how spines may remodel during LTP.

Weiss, Ellen email , , , , , , publications

The vertebrate retina is an extension of the central nervous system that controls visual signaling and circadian rhythm.  Our laboratory is interested in how the retina adapts to changing light intensities in the natural environment.  We are presently studying the regulation of 2 G protein-coupled receptor kinases, GRK1 and GRK7, that participate in signal termination in the light-detecting cells of the retina, the rods and cones.  Signal termination helps these cells recover from light exposure and adapt to continually changing light intensities.  Recently, we determined that GRK1 and GRK7 are phosphorylated by cAMP-dependent protein kinase (PKA).  Since cAMP levels are regulated by light in the retina, phosphorylation by PKA may be important in recovery and adaptation.  Biochemical and molecular approaches are used in 2 model organisms, mouse and zebrafish, to address the role of PKA in retina function. Keywords:  cAMP, cone, G protein-coupled receptor, GPCR, GRK, kinase, neurobiology, opsin, PKA, retina, rhodopsin rod, second messenger, signal transduction, vision.

Wilhelmsen, Kirk email , , , , publications

The Wilhelmsen lab is engaged in the genetic mapping of susceptibility loci for complex neurological diseases and has been developing large-scale automated gene mapping technologies to facilitate these mapping efforts. They have invested heavily in automation that enables high-throughput genotyping and data processing. As data accumulates, this will enable parametric and nonparametric linkage analysis of large numbers of traits at regular intervals for the entire genome. The Wilhelmsen lab is applying these techniques to two projects: (1) the genetics of alcoholism and (2) positional cloning of the gene responsible for a family of disorders called frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17).

Zylka, Mark J. email , , , , , , , publications

Our research is focused on two general areas:  1. Autism and 2. Pain.  Our autism research is focused on topoisomerases and other transcriptional regulators that were recently linked to autism.  We use genome-wide approaches to better understand how these transcriptional regulators affect gene expression in developing and adult neurons (such as RNA-seq, ChIP-seq, Crispr/Cas9 for knocking out genes).  We also assess how synaptic function is affected, using calcium imaging and electrophysiology.   In addition, we are performing a large RNA-seq screen to identify chemicals and drugs that increase risk for autism.   /  / Our pain research is focused on lipid kinases that regulate pain signaling and sensitization.  This includes work with cultured dorsal root ganglia (DRG) neurons, molecular biology and behavioral models of chronic pain.  We also are working on drug discovery projects, with an eye towards developing new therapeutics for chronic pain.